Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mycobacteriol ; 12(2): 144-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338475

RESUMO

Background: Despite recent advances in the development of more sensitive technologies for the diagnosis of tuberculosis (TB), in resource-limited settings, the diagnosis continues to rely on sputum smear microscopy. This is because smear microscopy is simple, cost-efficient and the most accessible tool for the diagnosis of TB. Our study evaluated the performance of light-emitting diode fluorescence microscopy (LED-FM) using auramine/rhodamine (auramine) and the fluorescein di-acetate (FDA) vital stain in the diagnostic of pulmonary TB in Bamako, Mali. Methods: Sputum smear microscopy was conducted using the FDA and auramine/rhodamine staining procedures on fresh samples using LED-FM to evaluate the Mycobacterium TB (MTB) metabolic activity and to predict contagiousness. Mycobacterial culture assay was utilized as a gold standard method. Results: Out of 1401 TB suspected patients, 1354 (96.65%) were retrieved from database, which were MTB complex culture positive, and 47 (3.40%) were culture negative (no mycobacterial growth observed). Out of the 1354 included patients, 1343 (95.86%), were acid-fast bacillus (AFB) positive after direct FDA staining, 1352 (96.50%) AFB positive after direct Auramine, and 1354 (96.65%) AFB positive with indirect auramine after digestion and centrifugation. Overall, the FDA staining method has a sensitivity of 98.82%, while the sensitivity of Auramine with direct observation was 99.48%, and 99.56% with the indirect examination. Conclusion: This study showed that, using fresh sputum both auramine/rhodamine and FDA are highly sensitive methods in diagnosing pulmonary TB and could be easily used in countries with limited resource settings.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Benzofenoneídio , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Microscopia de Fluorescência/métodos , Tuberculose/diagnóstico , Fluoresceína , Rodaminas , Sensibilidade e Especificidade
2.
Open J Epidemiol ; 13(1): 97-111, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36910425

RESUMO

Tuberculosis disease stands for the second leading cause of death worldwide after COVID-19, most active tuberculosis cases result from the reactivation of latent TB infection through impairment of immune response. Several factors are known to sustain that process. Schistosoma mansoni, a parasite of the helminth genus that possesses switching power from an immune profile type Th1 to Th2 that favors reactivation of latent TB bacteria. The aim of the study was to assess the prevalence of the co-infection between the two endemic infections. Systematic literature was contacted at the University Clinical Research Center at the University of Sciences, Techniques, and Technologies of Bamako in Mali. Original articles were included, and full texts were reviewed to assess the prevalence and better understand the immunological changes that occur during the co-infection. In total, 3530 original articles were retrieved through database search, 53 were included in the qualitative analysis, and data from 10 were included in the meta-analysis. Prevalence of the co-infection ranged from 4% to 34% in the literature. Most of the articles reported that immunity against infection with helminth parasite and more specifically Schistosoma mansoni infection enhances latent TB reactivation through Th1/Th2. In sum, the impact of Schistosoma mansoni co-infection with Mycobacterium tuberculosis is under-investigated. Understanding the role of this endemic tropical parasite as a contributing factor to TB epidemiology and burden could help integrate its elimination as one of the strategies to achieve the END-TB objectives by the year 2035.

3.
IJID Reg ; 6: 24-28, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36448028

RESUMO

Background: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants may have contributed to prolonging the pandemic, and increasing morbidity and mortality related to coronavirus disease 2019 (COVID-19). This article describes the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves in Mali between April and October 2021. Methods: The respiratory SARS-CoV-2 complete spike (S) gene from positive samples was sequenced. Generated sequences were aligned by Variant Reporter v3.0 using the Wuhan-1 strain as the reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0% (1008/16,797) tested positive for SARS-CoV-2 on quantitative reverse transcription polymerase chain reaction. Of these, 16.07% (162/1008) had a cycle threshold value ≤28 and were amplified and sequenced. The complete S gene sequence was recovered from 80 of 162 (49.8%) samples. Seven distinct variants were identified: Delta (62.5%), Alpha (1.2%), Beta (1.2%), Eta (30.0%), 20B (2.5%), 19B (1.2%) and 20A (1.2%). Conclusions and perspectives: Several SARS-CoV-2 variants were present during the COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA