Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26(4): 1376-1385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204407

RESUMO

AIM: To assess the safety, tolerability and pharmacokinetic (PK) profile of single and multiple doses of CPL207280, a new G-protein-coupled receptor 40 agonist developed to treat type 2 diabetes (T2D). METHODS: The phase 1 study in healthy volunteers (White, age 18-55 years, body mass index 18.5-29.9 kg/m2 ) was performed after single (24 subjects, 5-480 mg) and multiple (32 subjects, 60-480 mg) once-daily administration of CPL207280.  The effect of food intake and interaction with metformin were evaluated in additional cohort (12 subjects, 120 mg). The primary objective was the safety and tolerability of CPL207280. Secondary objectives included PK and pharmacodynamic (PD) characteristics (glucose, insulin, C-peptide, proinsulin, glucagon levels) observed during the 14-day treatment period. RESULTS: No deaths or serious adverse events (AEs) were reported. All reported AEs were classified as unrelated to the study product. No clinically significant differences in safety parameters were observed between cohorts and no food or metformin effect on safety parameters was identified. The ascending dose of CPL207280 caused an increase in the PK parameters maximum observed plasma concentration (Cmax ) or area under the plasma concentration-time curve up to 24 h. However, dose-normalized Cmax decreased with ascending dose. There was no relationship between the CPL207280 dose or prandial state and terminal elimination half-life and terminal elimination rate constant. No clear relationship between CPL207280 dose and PD area under the effect curve values was observed. CONCLUSIONS: CPL207280 was found to be safe and well tolerated by healthy volunteers (with a low risk of hepatotoxicity) for up to 14 days of administration. The PK profile of CPL207280 supports single-daily administration and justifies further development of this therapy for patients with T2D.


Assuntos
Caproatos , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Ácidos Graxos não Esterificados , Diabetes Mellitus Tipo 2/tratamento farmacológico , Voluntários Saudáveis , Área Sob a Curva , Metformina/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego
2.
Pulm Pharmacol Ther ; 73-74: 102127, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429651

RESUMO

Ketamine and its enantiomer esketamine have gained much attention in recent years as potent, fast-acting agents for the management of treatment-resistant depression. However, an alternative to oral ketamine administration is required to ensure adequate systemic exposure as the drug undergoes extensive first-pass metabolism. We propose dry powder inhalation as a new esketamine delivery route. Here, we examine the pharmacokinetics, pharmacodynamics, toxicology and safety of this novel esketamine administration method. Esketamine (10 mg/kg) and ketamine racemate (20 mg/kg) were administered to rats by dry powder inhalation, intravenous injection or intratracheal instillation and the pharmacokinetics of these treatments were compared. Analyte concentration of ketamine stereoisomers and their metabolites was assessed by LC-MS/MS method. Esketamine showed a clinically relevant pharmacokinetic profile, with high bioavailability (62%) and relatively low maximum concentration peaks. Esketamine exhibited high penetration of the blood-brain barrier, but pharmacodynamic examinations of brain homogenates showed no changes in selected protein phosphorylation or expression analyzed by the immunoblotting method. We conducted GLP-compliant 14-day and 28-day general toxicity studies in rats and dogs, respectively, subjected to dry esketamine powder inhalation. The maximum daily dosages were 46.5 mg/kg and 36.5 mg/kg, respectively. We also performed pharmacological safety studies. Esketamine inhaled as dry powder had an expected safety profile consistent with its known pharmacological action. None of its observed effects were considered toxicologically significant. The pharmacological safety studies confirmed that the observed effects were transient and that inhaled esketamine had a good safety profile. Hence, our preclinical studies demonstrated that dry powder inhalation is a highly efficacious and safe delivery route for esketamine and may be a viable alternative administration route meriting further clinical development.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cromatografia Líquida , Cães , Ketamina/efeitos adversos , Pós , Ratos , Espectrometria de Massas em Tandem
3.
Pharmaceutics ; 13(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071286

RESUMO

Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.

4.
Chemistry ; 22(49): 17776-17783, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27786388

RESUMO

Despite the fact that extensive research has been carried out, the oxygenation of alkyl magnesium species still remains a highly unexplored research area and significant uncertainties concerning the mechanism of these reactions and the composition of the resulting products persist. This case study compares the viability of the controlled oxygenation of alkylmagnesium complexes supported by ß-diketiminates. The structural tracking of the reactivity of (N,N)MgR-type complexes towards O2 at low temperature showed that their oxygenation led exclusively to the formation of magnesium alkylperoxides (N,N)MgOOR. The results also highlight significant differences in the stability of the resulting alkylperoxides in solution and demonstrate that [(BDI)Mg(µ-η2 :η1 -OOBn)]2 (in which BDI=[(ArNCMe)2 CH]- and Ar=C6 H3 iPr2 -2,6) can be easily transformed to the corresponding magnesium alkoxide [(BDI)MgOBn]2 at ambient temperature, whilst [(F3 BDI)Mg(µ-OOtBu)]2 (in which F3 BDI=[(ArNCMe)2 CH]- and Ar=C6 H2 F3 -2,4,6) is stable under similar conditions. The observed selective oxygenation of (N,N)MgR-type complexes to the corresponding (N,N)MgOOR alkylperoxides strongly contradicts the widely accepted radical-chain mechanism for the oxygenation of the main-group-metal alkyls. Furthermore, either the observed transformation of the alkylperoxide [(BDI)MgOOBn]2 to the alkoxide [(BDI)MgOBn]2 as well as the formation of an intractable mixture of products in the control reaction between the alkylperoxide [(F3 BDI)MgOOtBu]2 and the parent alkylmagnesium [(F3 BDI)MgtBu] complex are not in line with the common wisdom that magnesium alkoxide complexes' formation results from the metathesis reaction between MgOOR and Mg-R species. In addition, a high catalytic activity of well-defined magnesium alkylperoxides, in combination with tert-butyl hydroperoxide (TBHP) as an oxygen source, in the epoxidation of trans-chalcone is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA