Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Magn Reson Imaging ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265188

RESUMO

Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.

2.
J Appl Clin Med Phys ; 23(9): e13731, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35920116

RESUMO

Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long-standing interest in multimodality co-registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT-CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT-CT DIR is applied to the MRI to register it with the CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI- and LPD-based methods, and the multimodality DIR provided by a state of the art, commercially available FDA-cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD- and MI-based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI- and LPD-based methods.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X/métodos
3.
J Contemp Brachytherapy ; 14(2): 176-182, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35494182

RESUMO

Purpose: The volume of Venezia applicator with vaginal caps can be relatively large compared to target volumes. This study investigated the dosimetric and radiobiological effects of applicator volume removal for cervical cancer patients treated with Venezia (VZ) and tandem and split-ring (TSR) applicators used in the clinic. Material and methods: A total of 40 patients (101 plans) with stage IIA-IIIC cervical cancer were retrospectively reviewed. Thirty patients were treated with VZ and ten patients were treated with TSR. Applicators were contoured on planning CTs where target contours were involved. Applicator contours were subtracted from the target contours. External beam radiation therapy (EBRT) and brachytherapy doses were calculated in biologically equivalent doses in 2 Gy fractions (EQD2) and combined using full parameter addition for dose-volume histogram (DVH) parameters of composited dose. D90%, D50%, V100%, V150%, V200%, and tumor control probability (TCP) were evaluated and compared for targets after applicator exclusion. Results: The average volume changes in gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), and intermediate-risk clinical target volume (IR-CTV) after VZ applicator exclusion were 1.4 ±1.5 cm3, 15.7 ±6.6 cm3, and 33.8 ±15.1 cm3, respectively. VZ exclusion resulted in significant changes (p < 0.05) in small volume parameters (D50%) and high-dose parameters (V150% and V200%) for HR-CTV and IR-CTV. Dosimetric impact of TSR exclusion on targets was not significant. There was no significant change in TCP after applicator exclusion. Conclusions: Venezia applicator with vaginal caps has significant impact on small volume and high-dose DVH parameters of the target. Applicator contour exclusion is recommended for dosimetric evaluation when Venezia applicator is used.

4.
IEEE Access ; 9: 17208-17221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747682

RESUMO

Multi-modality imaging constitutes a foundation of precision medicine, especially in oncology where reliable and rapid imaging techniques are needed in order to insure adequate diagnosis and treatment. In cervical cancer, precision oncology requires the acquisition of 18F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET), magnetic resonance (MR), and computed tomography (CT) images. Thereafter, images are co-registered to derive electron density attributes required for FDG-PET attenuation correction and radiation therapy planning. Nevertheless, this traditional approach is subject to MR-CT registration defects, expands treatment expenses, and increases the patient's radiation exposure. To overcome these disadvantages, we propose a new framework for cross-modality image synthesis which we apply on MR-CT image translation for cervical cancer diagnosis and treatment. The framework is based on a conditional generative adversarial network (cGAN) and illustrates a novel tactic that addresses, simplistically but efficiently, the paradigm of vanishing gradient vs. feature extraction in deep learning. Its contributions are summarized as follows: 1) The approach -termed sU-cGAN-uses, for the first time, a shallow U-Net (sU-Net) with an encoder/decoder depth of 2 as generator; 2) sU-cGAN's input is the same MR sequence that is used for radiological diagnosis, i.e. T2-weighted, Turbo Spin Echo Single Shot (TSE-SSH) MR images; 3) Despite limited training data and a single input channel approach, sU-cGAN outperforms other state of the art deep learning methods and enables accurate synthetic CT (sCT) generation. In conclusion, the suggested framework should be studied further in the clinical settings. Moreover, the sU-Net model is worth exploring in other computer vision tasks.

5.
Brachytherapy ; 20(2): 353-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187822

RESUMO

PURPOSE: The in vivo dosimetric monitoring in HDR brachytherapy is important for improving patient safety. However, there are very limited options available for clinical application. In this study, we present a new in vivo dose measurement system with a plastic scintillating detector (PSD) for GYN HDR brachytherapy. METHODS: An FDA approved PSD system, called OARtrac (AngioDynamics, Latham, NY), was used with various applicators for in vivo dose measurements for GYN patients. An institutional workflow was established for the clinical implementation of the dosimetric system. Action levels were proposed based on the measurement and system uncertainty for measurement deviations. From October 2018 to September 2019, a total of 75 measurements (48 fractions) were acquired from 14 patients who underwent HDR brachytherapy using either a multichannel cylinder, Venezia applicator, or Syed-Neblett template. The PSDs were placed in predetermined catheters/channels. A planning CT was acquired for treatment planning in Oncentra (Elekta, Version-4.5.2) TPS. The PSDs were contoured on the CT images, and the PSD D90% values were used as the expected doses for comparison with the measured doses. RESULTS: The mean difference from patient measurements was -0.22% ± 5.98%, with 26% being the largest deviation from the expected value (Syed case). Large deviations were observed when detectors were placed in the area where dose rates were less than 1 cGy/s. CONCLUSIONS: The establishment of clinical workflow for the in vivo dosimetry for both the intracavitary and interstitial GYN HDR brachytherapy will potentially improve the safety of the patient treatment.


Assuntos
Braquiterapia , Braquiterapia/métodos , Catéteres , Estudos de Viabilidade , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Pract Radiat Oncol ; 9(6): e559-e571, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31238167

RESUMO

PURPOSE: This study assessed the appropriateness of full parameter addition (FPA) methods with respect to the 3-dimensional deformable dose composite method for evaluating combined external beam radiation therapy (EBRT) and intracavitary brachytherapy (ICBT). METHODS AND MATERIALS: A total of 22 patients who received EBRT and high-dose-rate ICBT were retrospectively evaluated. Split-ring and tandem applicators were used for all patients. Additional interstitial needles were used for 5 patients to supplement the implant. Deformable image registrations were performed to deform the secondary EBRT and ICBT planning computed tomography (CT) images onto the reference CT from the third fraction of ICBT. The Dice similarity coefficient was used to evaluate the quality of deformable registration. Doses were transferred to the reference CT, scaled to the equivalent dose in 2-Gy fractions and combined to create the dose composite. Eight dose-accumulation methods were evaluated and compared. D2cc and D0.1cc for organs at risk were investigated. RESULTS: The differences in D2cc for rectum, bladder, sigmoid, and bowel between the FPA method for whole-pelvis EBRT and ICBT, calculated using an old American Brachytherapy Society worksheet (FPA_Eh + I_old) and deformable composite for EBRT with boosts and ICBT (Def_E + B + I) were -2.19 ± 1.37 Gyα/ß = 3, -0.64 ± 1.13 Gyα/ß = 3, -2.06 ± 2.71 Gyα/ß = 3, and -1.59 ± 0.89 Gyα/ß = 3, respectively. The differences in D2cc for rectum, bladder, sigmoid, and bowel between the new ABS worksheet (FPA_Eh + B + I_abs) and the Def_E + B + I method were 1.21 ± 1.22 Gy α/ß = 3, 1.93 ± 1.38 Gyα/ß = 3, 0.72 ± 1.12 Gyα/ß = 3, and 1.19 ± 1.46 Gyα/ß = 3, respectively. Differences in dose-volume histogram parameter values among Def_E + B + I and other FPA methods were not statistically significant (P > .05). CONCLUSIONS: Compared with the FPA-based method, deformable registration-based dose composites demonstrated lower OAR D2cc and D0.1cc values; however, the differences were not statistically significant. The current ABS-recommended FPA-based sheet can serve as an acceptable plan evaluation tool for clinical purposes.


Assuntos
Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
7.
Med Phys ; 46(8): 3520-3531, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31063248

RESUMO

PURPOSE: Accurate photon attenuation assessment from MR data remains an unmet challenge in the thorax due to tissue heterogeneity and the difficulty of MR lung imaging. As thoracic tissues encompass the whole physiologic range of photon absorption, large errors can occur when using, for example, a uniform, water-equivalent or a soft-tissue-only approximation. The purpose of this study was to introduce a method for voxel-wise thoracic synthetic CT (sCT) generation from MR data attenuation correction (AC) for PET/MR or for MR-only radiation treatment planning (RTP). METHODS: Acquisition: A radial stack-of-stars combining ultra-short-echo time (UTE) and modified Dixon (mDixon) sequence was optimized for thoracic imaging. The UTE-mDixon pulse sequence collects MR signals at three TE times denoted as UTE, Echo1, and Echo2. Three-point mDixon processing was used to reconstruct water and fat images. Bias field correction was applied in order to avoid artifacts caused by inhomogeneity of the MR magnetic field. ANALYSIS: Water fraction and R2* maps were estimated using the UTE-mDixon data to produce a total of seven MR features, that is UTE, Echo1, Echo2, Dixon water, Dixon fat, Water fraction, and R2*. A feature selection process was performed to determine the optimal feature combination for the proposed automatic, 6-tissue classification for sCT generation. Fuzzy c-means was used for the automatic classification which was followed by voxel-wise attenuation coefficient assignment as a weighted sum of those of the component tissues. Performance evaluation: MR data collected using the proposed pulse sequence were compared to those using a traditional two-point Dixon approach. Image quality measures, including image resolution and uniformity, were evaluated using an MR ACR phantom. Data collected from 25 normal volunteers were used to evaluate the accuracy of the proposed method compared to the template-based approach. Notably, the template approach is applicable here, that is normal volunteers, but may not be robust enough for patients with pathologies. RESULTS: The free breathing UTE-mDixon pulse sequence yielded images with quality comparable to those using the traditional breath holding mDixon sequence. Furthermore, by capturing the signal before T2* decay, the UTE-mDixon image provided lung and bone information which the mDixon image did not. The combination of Dixon water, Dixon fat, and the Water fraction was the most robust for tissue clustering and supported the classification of six tissues, that is, air, lung, fat, soft tissue, low-density bone, and dense bone, used to generate the sCT. The thoracic sCT had a mean absolute difference from the template-based (reference) CT of less than 50 HU and which was better agreement with the reference CT than the results produced using the traditional Dixon-based data. CONCLUSION: MR thoracic acquisition and analyses have been established to automatically provide six distinguishable tissue types to generate sCT for MR-based AC of PET/MR and for MR-only RTP.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Análise por Conglomerados , Humanos
8.
J Appl Clin Med Phys ; 20(6): 31-38, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004396

RESUMO

PURPOSE: Transrectal ultrasound images are routinely acquired for low dose rate (LDR) prostate brachytherapy dosimetric preplanning (pTRUS), although diagnostic multiparametric magnetic resonance imaging (mpMRI) may serve this purpose as well. We compared the predictive abilities of TRUS vs MRI relative to intraoperative TRUS (iTRUS) to assess the role of mpMRI in brachytherapy preplanning. MATERIALS AND METHODS: Retrospective analysis was performed on 32 patients who underwent iTRUS-guided prostate LDR brachytherapy as either mono- or combination therapy. 56.3% had pTRUS-only volume studies and 43.7% had both 3T-mpMRI and pTRUS preplanning. MRI was used for preplanning and its image fusion with iTRUS was also used for intraoperative guidance of seed placement. Differences in gland volume, seed number, and activity and procedure time were examined, as well as the identification of lesions suspicious for tumor foci. Pearson correlation coefficient and Fisher's Z test were used to estimate associations between continuous measures. RESULTS: There was good correlation of planning volumes between iTRUS and either pTRUS or MRI (r = 0.89, r = 0.77), not impacted by the addition of hormonal therapy (P = 0.65, P = 0.33). Both consistently predicted intraoperative seed number (r = 0.87, r = 0.86). MRI/TRUS fusion did not significantly increase surgical or anesthesia time (P = 0.10, P = 0.46). mpMRI revealed suspicious focal lesions in 11 of 14 cases not visible on pTRUS, that when correlated with histopathology, were incorporated into the plan. CONCLUSIONS: Relative to pTRUS, MRI yielded reliable preplanning measures, supporting the role of MRI-only LDR treatment planning. mpMRI carries numerous diagnostic, staging and preplanning advantages that facilitate better patient selection and delivery of novel dose escalation and targeted therapy, with no additional surgical or anesthesia time. Prospective studies assessing its impact on treatment planning and delivery can serve to establish mpMRI as the standard of care in LDR prostate brachytherapy planning.


Assuntos
Imageamento por Ressonância Magnética/métodos , Monitorização Intraoperatória/métodos , Inoculação de Neoplasia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Ultrassonografia/métodos , Idoso , Braquiterapia , Estudos Transversais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/cirurgia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
9.
Artif Intell Med ; 90: 34-41, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30054121

RESUMO

BACKGROUND: Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring. METHODS/MATERIALS: Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord. RESULTS: The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value. CONCLUSION: With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Máquina de Vetores de Suporte , Humanos , Imagem Multimodal , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
10.
Phys Med Biol ; 63(12): 125001, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29787382

RESUMO

The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.


Assuntos
Aprendizado de Máquina , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas
11.
J Appl Clin Med Phys ; 19(3): 44-51, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667307

RESUMO

PURPOSE: The addition of a braided bio-absorbable vicryl coating to the surface of radioactive seeds used for low dose rate (LDR) prostate brachytherapy is intended to reduce the incidence of seed movement and migration. Here, we present a single-institution study of the frequency and severity of seed slippage (initial seed movement) of coated seeds in comparison with uncoated seeds. METHODS: Forty-seven patients received permanent prostate brachytherapy, with either coated (n = 26) or uncoated (n = 21) seeds. AgX100 125 I seeds, coated or uncoated, and uncoated Model 200 103 Pd seeds were used. During the ultrasound-guided implantation procedure, each implanted seed was categorized as having remained in the implanted position after being placed, having moved slightly, or having left the ultrasound field of view. RESULTS: 3.1% of the coated seeds (AgX100 seeds, n = 70) and 6.9% of the uncoated seeds (AgX100 and Model 200 seeds, n = 128) were observed to have moved at least 2 mm from their initial implant positions, respectively. The difference in incidence of this movement was 54.4% (P = 0.0026). Coated AgX100 seeds demonstrated a 66.7% lower rate of movement of at least 2 mm than that for uncoated AgX100 seeds (P = 0.038), and a 49.0% lower rate than that for Model 200 seeds (P = 0.021). While no significant differences were noted in prescription dose coverage of the prostate or the studied dosimetric parameters for the organs at risk between the coated and uncoated seeds (P > 0.05) in the CT-based Day-0 postoperative plans, the limited sample size and differences in energies between the 125 I and 103 Pd seeds make further analysis of postoperative dosimetric coverage difficult without additional data directly comparing the coated and uncoated 125 I seeds. CONCLUSION: When the vicryl coating is used, seeds have a significantly lower propensity to slip from their initial implant locations. This may help maintain dosimetric integrity, warranting further study of postoperative dosimetry.


Assuntos
Braquiterapia/instrumentação , Radioisótopos do Iodo/uso terapêutico , Movimento (Física) , Inoculação de Neoplasia , Polímeros/química , Neoplasias da Próstata/radioterapia , Próteses e Implantes , Idoso , Seguimentos , Migração de Corpo Estranho/diagnóstico por imagem , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Ultrassonografia/métodos
12.
J Appl Clin Med Phys ; 17(6): 305-311, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929503

RESUMO

A novel FDA approved in vivo dosimetry device system using plastic scintillating detectors placed in an endorectal balloon to provide real-time in vivo dosimetry for prostatic rectal interface was tested for use with stereotactic body radiotherapy (SBRT). The system was used for the first time ever to measure dose during linear accelerator based SBRT. A single patient was treated with a total dose of 36.25 Gy given in 5 fractions. Delivered dose was measured for each treatment with the detectors placed against the anterior rectal wall near the prostate rectal interface. Measured doses showed varying degrees of agreement with computed/ planned doses, with average combined dose found to be within 6% of the expected dose. The variance between measurements is most likely due to uncertainty of the detector location, as well as variation in the placement of a new balloon prior to each fraction. Distance to agreement for the detectors was generally found to be within a few millimeters, which also suggested that the differences in measured and calculated doses were due to positional uncertainty of the detectors during the SBRT, which had sharp dose falloff near the penumbra along the rectal wall. Overall, the use of a real time in vivo dosimeter provided a level of safety and improved confidence in treatment delivery. We are evaluating the device further in an IRB-approved prospective partial prostate SBRT trial, and believe further clinical investigations are warranted.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Dosimetria in Vivo/métodos , Neoplasias da Próstata/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
13.
J Nucl Med ; 57 Suppl 1: 34S-9S, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26834099

RESUMO

Changes in tumor metabolic activity have been shown to be an early indicator of treatment effectiveness for breast cancer, mainly in the neoadjuvant setting. The histopathologic response at the completion of chemotherapy has been used as the reference standard for assessment of the accuracy of (18)F-FDG PET in predicting a response during systemic treatment. Although a pathologic complete response (pCR) remains an important positive prognostic factor for an individual patient, a recent metaanalysis could validate pCR as a surrogate marker for patient outcomes only in aggressive breast cancer subtypes. For establishment of the clinical application of metabolic treatment response studies, larger series of specific breast cancer subtypes-including hormone receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative breast cancers-are necessary. In addition, thresholds for relative changes in (18)F-FDG uptake to distinguish between responding and nonresponding tumors need to be validated for different systemic treatment approaches, with progression-free survival and overall survival as references. A PET-based treatment stratification is applicable clinically only if valid alternative therapies are available. Of note, patients who do not achieve a pCR might still benefit from neoadjuvant therapy enabling breast-conserving surgery. In the metastatic setting, residual tumor metabolic activity after the initiation of systemic therapy is an indicator of active disease, whereas a complete resolution of metabolic activity is predictive of a successful treatment response.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Feminino , Humanos , Monitorização Fisiológica , Resultado do Tratamento
14.
Med Phys ; 42(8): 4974-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26233223

RESUMO

PURPOSE: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. METHODS: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2(∗) images (1/T2(∗)) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2(∗), were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. RESULTS: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 µs (max: 1.350 µs; min: 0.180 µs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (-22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. CONCLUSIONS: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Tomografia/métodos , Análise por Conglomerados , Estudos de Viabilidade , Humanos , Crânio/anatomia & histologia
15.
J Palliat Med ; 18(7): 573-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25974663

RESUMO

Metastatic epidural spinal cord compression (MESCC) is an oncologic emergency and if left untreated, permanent paralysis will ensue. The treatment of MESCC is governed by disease, patient, and treatment factors. Patient's preferences and goals of care are to be weighed into the treatment plan. Ideally, a patient with MESCC is evaluated by an interdisciplinary team promptly to determine the urgency of the clinical scenario. Treatment recommendations must take into consideration the risk-benefit profiles of surgical intervention and radiotherapy for the particular individual's circumstance, including neurologic status, performance status, extent of epidural disease, stability of the spine, extra-spinal disease status, and life expectancy. In patients with high spinal instability neoplastic score (SINS) or retropulsion of bone fragments in the spinal canal, surgical intervention should be strongly considered. The rate of development of motor deficits from spinal cord compression may be a prognostic factor for ultimate functional outcome, and should be taken into account when a treatment recommendation is made. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.


Assuntos
Compressão da Medula Espinal/terapia , Neoplasias da Coluna Vertebral/secundário , Idoso , Diagnóstico por Imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Recidiva , Sociedades Médicas , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/patologia , Neoplasias da Coluna Vertebral/complicações , Doente Terminal
16.
Technol Cancer Res Treat ; 14(4): 428-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25336380

RESUMO

This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador , Algoritmos , Humanos , Imagens de Fantasmas/normas , Garantia da Qualidade dos Cuidados de Saúde , Reprodutibilidade dos Testes
17.
J Palliat Med ; 18(1): 11-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25317672

RESUMO

Bone metastases are a common clinical problem, affecting many types of cancer patients. The presence of tumor in bone can cause significant morbidity including pain, neurological dysfunction, hypercalcemia, and pathological fracture leading to functional loss. The optimal treatment of a patient with bone metastases depends on many factors, including evaluation of the patient's goals of care, performance status, mechanical stability of the affected bone, life expectancy, and overall extent of disease. Treatment options may include radiotherapy, systemic therapies, surgical stabilization, medical pain management, and radiopharmaceuticals. Ideal management of bone metastases requires a coordinated multidisciplinary approach among diagnostic radiologists, radiation oncologists, medical oncologists, orthopedic surgeons, pain specialists, physiatrists, and palliative care specialists. The American College of Radiology Appropriateness Criteria(®) are evidence-based guidelines for specific clinical conditions that are reviewed every 3 years by a multidisciplinary expert panel. The guidelines development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.


Assuntos
Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Guias de Prática Clínica como Assunto , Humanos , Doses de Radiação , Radioterapia/normas , Sociedades Médicas , Estados Unidos
18.
Mol Imaging Biol ; 15(6): 776-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23632951

RESUMO

PURPOSE: The purpose of this study was to compare and correlate standardized uptake values (SUV) derived from magnetic resonance attenuation correction (MRAC) with those derived from computed tomography attenuation correction (CTAC) in an oncology patient population. PROCEDURES: The HIPAA-compliant study was approved by the Internal Review Board and all subjects gave written informed consent prior to inclusion in the study. Forty patients (mean age 61 ± 15.1; 20 male) referred for clinically indicated 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) scans also underwent a PET/magnetic resonance imaging (MRI) examination. MRAC was performed using an automatic three-segment model. Regions of interest were drawn over eight normal structures in order to obtain SUVmax and SUVmean values. Spearman rank correlation coefficients (r) were calculated and two-tailed paired t tests were performed to compare the SUVmax and SUVmean values obtained from CTAC with those from MRAC. RESULTS: The mean time after FDG injection was 66 ± 7 min for PET/CT and 117 ± 15 min for PET/MRI examination. MRAC SUV values were significantly lower than the CTAC SUV values in mediastinal blood pool (p < 0.001 for both SUVmax and SUVmean) and liver (p = 0.01 for SUVmean). The MRAC SUV values were significantly higher in bone marrow (p < 0.001 for both SUVmax and SUVmean), psoas major muscle (p < 0.001 for SUVmax), and left ventricular myocardium (p < 0.001 for SUVmax and p = 0.01 for SUVmean). For the other normal structures, no significant difference was observed. When comparing SUV values generated from CTAC versus MRAC, high correlations between CTAC and MRAC were observed in myocardium (r = 0.96/0.97 for SUVmax/mean), liver (r = 0.68 for SUVmax), bone marrow (r = 0.80/0.83 for SUVmax/mean), lung tissue (r = 0.70 for SUVmax), and mediastinal blood pool (r = 0.0.68/.069 for SUVmax/mean). Moderate correlations were found in lung tissue (r = 0.67 for SUV mean), liver (r = 0.66 for SUVmean), fat (r = 0.48/0.53 for SUVmax/mean), psoas major muscle (r = 0.54/0.58 for SUVmax/mean), and iliacus muscle (r = 0.41 for SUVmax). Low correlation was found in iliacus muscle (r = 0.32 for SUVmean). CONCLUSIONS: Using the automatic three-segment model, our study showed high correlation for measurement of SUV values obtained from MRAC compared to those from CTAC, as the reference standard. Differences observed between MRAC and CTAC derived SUV values may be attributed to the time-delay between the PET/CT and PET/MRI scans or biologic clearance of radiotracer. Further studies are required to assess SUV measurements when performing different MR attenuation correction techniques.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Compostos Radiofarmacêuticos/farmacocinética , Tomografia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Cintilografia , Compostos Radiofarmacêuticos/administração & dosagem , Estatísticas não Paramétricas , Distribuição Tecidual
19.
Mol Imaging Biol ; 7(3): 203-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15912424

RESUMO

PURPOSE: Imaging purine receptors and adenylate biodistribution in vivo may be of clinical importance not only for the investigation of normal adenylate metabolism but also in pathological conditions where adenylate uptake and/or release from certain tissues and organs may be altered, such as some types of cancer. In order to develop a tracer for positron emission tomography (PET) that would not be subject to loss of its radioisotope, adenosine 5'-monophosphate (AMP) was intrinsically labeled at the C-8 position with carbon-11. PROCEDURES: [11C]AMP was synthesized by reacting 5-amino-1-beta-D-ribofuranosylimidazole-4-carboxamidine-5'-phosphate with [11C]formaldehyde. The metabolism of [11C]AMP in human blood was determined in vitro both in the presence and absence of dipyridamole. The ex vivo biodistribution of [11C]AMP and its in vivo dosimetry were determined in normal mice. The effect of dipyridamole on the distribution of [11C]AMP in mice was also determined. RESULTS: [11C]AMP was reliably synthesized in 34 minutes (n = 7) with an average radiochemical yield of 2.4% and an average specific activity of 90.10 GBq/micromol (2435 mCi/micromol) at end of synthesis. In normal mice, the highest uptake of [11C]AMP was in the lungs, blood, and heart. The ex vivo mouse experiments showed that the uptake of 11C radiotracer in the lungs at 60 minutes postinjection was significantly lower for dipyridamole-treated animals than controls. Dosimetry showed that the critical organs for radiation dose burden are kidneys and bladder. CONCLUSIONS: Treatment with dipyridamole blocked the red blood cell uptake of extracellular adenosine and therefore its subsequent intracellular conversion to ATP. The biodistribution studies indicate that the tracer has substantial accumulation in the kidneys, lungs, heart, and blood. [11C]AMP is promising as a PET-imaging agent to trace adenylate biology in vivo.


Assuntos
Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/química , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Dipiridamol/farmacologia , Humanos , Masculino , Camundongos , Estrutura Molecular , Radioquímica , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA