Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Cell Biol ; 182: 199-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359977

RESUMO

Transcription-replication conflicts (TRCs) represent a potent endogenous source of replication stress. Besides the spatial and temporal coordination of replication and transcription programs, cells employ many additional mechanisms to resolve TRCs in a timely manner, thereby avoiding replication fork stalling and genomic instability. Proximity ligation assays (PLA) using antibodies against actively elongating RNA Polymerase II (RNAPIIpS2) and PCNA to detect proximity (<40nm) between transcribing RNA polymerases and replication forks can be used to assess and quantify TRC levels in cells. A complementary fluorescence microscopy approach to assess the spatial coordination of transcription and replication activities in the nucleus is to quantify the colocalization (200-400nm) between active transcription and ongoing replication using immunofluorescence staining with an antibody against elongating RNA Polymerase II (RNAPIIpS2) and EdU-Click-it pulse-labelling, respectively. Despite significant efforts to automate image analysis, the need for manual verification, correction, and complementation of automated processes creates a bottleneck for efficient, high-throughput and large-scale imaging. Here, we describe an automated Fiji image analysis macro that allows the user to automate the measurement of RNAPIIpS2 and EdU levels and extract the key parameters such as transcription-replication (TR) colocalization and TRC-PLA foci count from single cells in a high throughput manner. While we showcase the usability of this analysis pipeline for quantifying TR colocalization and TRC-PLA in mouse embryonic stem cells (mESCs), the analysis pipeline is designed as a generally applicable tool allowing the quantification of nuclear signals, colocalization and foci count in various model systems and cell types.


Assuntos
Replicação do DNA , RNA Polimerase II , Animais , Camundongos , RNA Polimerase II/genética , Replicação do DNA/genética , Mamíferos
2.
Nucleic Acids Res ; 51(22): 12303-12324, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956271

RESUMO

Stochastic origin activation gives rise to significant cell-to-cell variability in the pattern of genome replication. The molecular basis for heterogeneity in efficiency and timing of individual origins is a long-standing question. Here, we developed Methylation Accessibility of TArgeted Chromatin domain Sequencing (MATAC-Seq) to determine single-molecule chromatin accessibility of four specific genomic loci. MATAC-Seq relies on preferential modification of accessible DNA by methyltransferases combined with Nanopore-Sequencing for direct readout of methylated DNA-bases. Applying MATAC-Seq to selected early-efficient and late-inefficient yeast replication origins revealed large heterogeneity of chromatin states. Disruption of INO80 or ISW2 chromatin remodeling complexes leads to changes at individual nucleosomal positions that correlate with changes in their replication efficiency. We found a chromatin state with an accessible nucleosome-free region in combination with well-positioned +1 and +2 nucleosomes as a strong predictor for efficient origin activation. Thus, MATAC-Seq identifies the large spectrum of alternative chromatin states that co-exist on a given locus previously masked in population-based experiments and provides a mechanistic basis for origin activation heterogeneity during eukaryotic DNA replication. Consequently, our single-molecule chromatin accessibility assay will be ideal to define single-molecule heterogeneity across many fundamental biological processes such as transcription, replication, or DNA repair in vitro and ex vivo.


Assuntos
Origem de Replicação , Saccharomyces cerevisiae , Cromatina/genética , DNA , Replicação do DNA , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Cell Rep ; 42(2): 112045, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36701236

RESUMO

The chromatin environment at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how and which chromatin features control the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we use site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae. Using mass spectrometry, we define the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to known origin interactors, we find the microtubule-binding Ask1/DASH complex as an origin-regulating factor. Strikingly, tethering of Ask1 to individual origin sites advances replication timing (RT) of the targeted chromosomal domain. Targeted degradation of Ask1 globally changes RT of a subset of origins, which can be reproduced by inhibiting microtubule dynamics. Thus, our findings mechanistically connect RT and chromosomal organization via Ask1/DASH with the microtubule cytoskeleton.


Assuntos
Proteínas Associadas aos Microtúbulos , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , DNA/metabolismo , Replicação do DNA , Período de Replicação do DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteômica , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Life (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209204

RESUMO

Transcription-replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA