RESUMO
BACKGROUND: PET imaging after yttrium-90 (Y-90) radioembolization is challenging because of the low positron fraction of Y-90 (32 × 10-6). The resulting low number of events can be compensated by the high sensitivity of long axial field-of-view (LAFOV) PET/CT scanners. Nevertheless, the reduced event statistics require optimization of the imaging protocol to achieve high image quality (IQ) and quantification accuracy sufficient for post-treatment dosimetry. METHODS: Two phantoms (NEMA IEC and AbdoMan phantoms, mimicking human liver) filled with Y-90 and a 4:1 sphere (tumor)-to-background ratio were scanned for 24 h with the Biograph Vision Quadra (Siemens Healthineers). Eight patients were scanned after Y-90 radioembolization (1.3-4.7 GBq) using the optimized protocol (obtained by phantom studies). The IQ, contrast recovery coefficients (CRCs) and noise were evaluated for their limited and full acceptance angles, different rebinned scan durations, numbers of iterations and post-reconstruction filters. The s-value-based absorbed doses were calculated to assess their suitability for dosimetry. RESULTS: The phantom studies demonstrate that two iterations, five subsets and a 4 mm Gaussian filter provide a reasonable compromise between a high CRC and low noise. For a 20 min scan duration, an adequate CRC of 56% (vs. 24 h: 62%, 20 mm sphere) was obtained, and the noise was reduced by a factor of 1.4, from 40% to 29%, using the full acceptance angle. The patient scan results were consistent with those from the phantom studies, and the impacts on the absorbed doses were negligible for all of the studied parameter sets, as the maximum percentage difference was -3.89%. CONCLUSIONS: With 2i5s, a 4 mm filter and a scan duration of 20 min, IQ and quantification accuracy that are suitable for post-treatment dosimetry of Y-90 radioembolization can be achieved.
RESUMO
PET/CT scanners with a long axial field-of-view (LAFOV) provide increased sensitivity, enabling the adjustment of imaging parameters by reducing the injected activity or shortening the acquisition time. This study aimed to evaluate the limitations of reduced [18F]FDG activity doses on image quality, lesion detectability, and the quantification of lesion uptake in the Biograph Vision Quadra, as well as to assess the benefits of the recently introduced ultra-high sensitivity mode in a clinical setting. A number of 26 patients who underwent [18F]FDG-PET/CT (3.0 MBq/kg, 5 min scan time) were included in this analysis. The PET raw data was rebinned for shorter frame durations to simulate 5 min scans with lower activities in the high sensitivity (HS) and ultra-high sensitivity (UHS) modes. Image quality, noise, and lesion detectability (n = 82) were assessed using a 5-point Likert scale. The coefficient of variation (CoV), signal-to-noise ratio (SNR), tumor-to-background ratio (TBR), and standardized uptake values (SUV) including SUVmean, SUVmax, and SUVpeak were evaluated. Subjective image ratings were generally superior in UHS compared to the HS mode. At 0.5 MBq/kg, lesion detectability decreased to 95% (HS) and to 98% (UHS). SNR was comparable at 1.0 MBq/kg in HS (5.7 ± 0.6) and 0.5 MBq/kg in UHS (5.5 ± 0.5). With lower doses, there were negligible reductions in SUVmean and SUVpeak, whereas SUVmax increased steadily. Reducing the [18F]FDG activity to 1.0 MBq/kg (HS/UHS) in a LAFOV PET/CT provides diagnostic image quality without statistically significant changes in the uptake parameters. The UHS mode improves image quality, noise, and lesion detectability compared to the HS mode.
RESUMO
Introduction: Neuroendocrine neoplasms (NEN) are a rare and heterogenous group of tumors arising from neuroendocrine cells in multiple organs. Neuroendocrine tumors (NET) G3 encompass a small subgroup accounting for less than 10% of all neuroendocrine neoplasms. In contrast to NET G1 and G2 as well as neuroendocrine carcinomas (NEC), in NET G3 data on treatment and patient outcomes are still limited. Especially in a metastasized tumor stage, the role of surgery, peptide receptor radionucleotide therapy (PRRT), and systemic chemotherapy is not clearly defined. Methods: In this real-life cohort, we consecutively analyzed clinical outcome in NET G3 patients receiving different diagnostic and treatment. Results and discussion: We found that even metastasized NET G3 patients undergoing surgery, or receiving radiation, somatostatin analogues (SSA), and PRRT showed a clear survival benefit. Interestingly, all treatment regimen were superior to classical chemotherapeutic agents. In addition, somatostatin receptor (SSTR) PET-CT, FDG PET-CT, and repetitive biopsies were shown to be useful diagnostic and prognostic tools in NET G3. Our study demonstrates that patients with highly proliferative NET G3 might benefit from less aggressive treatment modalities commonly used in low proliferative NEN.