Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 15(6): 9701-9716, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34009950

RESUMO

Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common "barrier" that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.


Assuntos
Células Endoteliais , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Células de Kupffer , Fígado , Camundongos
2.
J Colloid Interface Sci ; 554: 453-462, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325679

RESUMO

HYPOTHESIS: Sodium Deoxycholate (NaDC) and Phenylalanine (Phe) are important biological hydrogelators. NaDC hydrogels form by lowering the pH or by increasing the ionic strength. Phe gels form from saturated solution by thermal induction and slow kinetics. The resulting gels hold great potential in medicine and biology as drug carriers and models for fundamental self-assembly in pathological conditions. Based on this background it was hypothesized that a Phe substituted NaDC could provide a molecule with expanded gelling ability, merging those of the precursors. EXPERIMENTS: We coupled both building blocks in a zwitterionic derivative bearing a Phe residue at the C3 carbon of NaDC. The specific zwitterionic structure, the concurrent use of Ca2+ ions for the carboxyl group coordination and the pH control generate conditions for the formation of hydrogels. The hydrogels were analyzed by combining UV and circular dichroism spectroscopies, rheology, small angle X-ray scattering and atomic force microscopy. FINDINGS: Hydrogel appearance occurs in conditions that are uncovered in the case of the pure Phe and NaDC: self-standing gels form instantaneously at room temperature, in the 10-12 pH range and down to concentration of 0.17 wt%. Both thixotropic and shake resistant gels can form depending on the derivative concentration. The gels show an uncommon thermal stability in the scanned range of 20-60 °C. The reported system concurrently enriches the hydrogelation properties of two relevant building blocks. We anticipate some potential applications of such gels in materials science where coordination of metal ions can be exploited for templating inorganic nanostructures.

3.
Langmuir ; 35(21): 6803-6821, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30234994

RESUMO

Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.

4.
Phys Chem Chem Phys ; 20(28): 18957-18968, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29972162

RESUMO

Self-assembled structures formed by mixtures of cationic and anionic surfactants are interesting tools for applications requiring interactions with charged particles and molecules. Nevertheless, they present instability close to the equimolar composition and poor morphological versatility, which is generally restricted to vesicles and micelles. Against this general trend, we report on bile salt derivative based catanionic mixtures assembling in tubules and lamellae depending on the mixture composition. Electrophoretic mobility measurements prove that the composition also dictates their superficial charge, which can be tuned from negative to positive by increasing the positively charged surfactant fraction in the mixtures. The study of the catanionic aggregates was conducted by means of microscopy and spectroscopy techniques and compared to the self-assembly behaviors of the individual building blocks. This study broadens the so far small array of bile salt derivative catanionic systems, confirming their distinctive behavior in the spectrum of catanionic mixtures.


Assuntos
Ácidos e Sais Biliares/química , Cátions/química , Nanotubos/química , Ensaio de Desvio de Mobilidade Eletroforética
5.
Colloids Surf B Biointerfaces ; 159: 183-190, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787634

RESUMO

In light of the biomedical interest for self-assembling amphiphiles bearing the tripeptide Arg-Gly-Gly (RGD), a cholic acid derivative was synthesized by introducing an aromatic moiety on the steroidal skeleton and the RGD sequence on the carboxylic function of its chain 17-24, thus forming a peptide amphiphile with the unconventional rigid amphiphilic structure of bile salts. In aqueous solution, the compound self-assembled into long twisted ribbons characterized by a very low degree of polydispersity in terms of width (≈25nm), thickness (≈4.5nm) and pitch (≈145nm). It was proposed that in the ribbon the molecules are arranged in a bilayer structure with the aromatic moieties in the interior, strongly involved in the intermolecular interaction, whereas the RGD residues are located at the bilayer-water interface. The nanostructure is significantly different from those generally provided by RGD-containing amphiphiles with the conventional peptide-tail structure, for which fibers with a circular cross-section were observed, and successfully tested as scaffolds for tissue regeneration. From previous work on the use of this kind of nanostructures, it is known that features like morphology, rigidity, epitope spacing and periodicity are important factors that dramatically affect cell adhesion and signaling. Within this context, the reported results demonstrate that bile salt-based peptide surfactants are promising building blocks in the preparation of non-trivial RGD-decorated nanoaggregates with well-defined morphologies and epitope distributions.


Assuntos
Ácidos e Sais Biliares/química , Ácido Cólico/química , Nanoestruturas/química , Oligopeptídeos/química
6.
Steroids ; 113: 87-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394960

RESUMO

The crystal structure of a Li(+) salt of a glucosyl derivative of lithocholic acid (lithium 3α-(α-d-glucopyranosyl)-5ß-cholan-24-oate) has been solved. The crystal belongs to the orthorhombic system, P212121 spatial group, and includes acetone and water in the structure with a 1:1:2 stoichiometry. Monolayers, having a hydrophobic interior and hydrophilic edges, are recognized in the crystal structure. Li(+) is coordinated to three hydroxyl groups of three different glucose residues, with two of them belonging to the same monolayer. A fourth molecule, located in this monolayer, is involved in the coordination of the cation through the carboxylate ion by an electrostatic interaction, thus completing a distorted tetrahedron. All Li(+)-oxygen distances values are very close to the sum of the ionic radius of Li(+) and van der Waals radius of oxygen. Each steroid molecule is linked to other five steroid molecules through hydrogen bonds. Water and acetone are also involved in the hydrogen bond network. A hierarchical organization can be recognized in the crystal, the helical assembly along 21 screw axes being left-handed.


Assuntos
Cristalografia por Raios X/métodos , Lítio/química , Ácido Litocólico/química , Modelos Moleculares
7.
Chemistry ; 22(11): 3697-703, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26880470

RESUMO

We report hybrid organosilica toroidal particles containing a short peptide sequence as the organic component of the hybrid systems. Once internalised in cancer cells, the presence of the peptide allows for interaction with peptidase enzymes, which attack the nanocarrier effectively triggering its structural breakdown. Moreover, these biodegradable nanovectors are characterised by high cellular uptake and exocytosis, showing great potential as biodegradable drug carriers. To demonstrate this feature, doxorubicin was employed and its delivery in HeLa cells investigated.


Assuntos
Aminopeptidases/química , Doxorrubicina/química , Nanopartículas/química , Peptídeos/química , Dióxido de Silício/química , Aminopeptidases/metabolismo , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos
8.
Angew Chem Int Ed Engl ; 54(24): 7018-21, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25925079

RESUMO

An approach for tailoring self-assembled tubular structures is described. By controlling the relative composition of a two-component surfactant mixture comprising the natural bile salt lithocholate and its bolamphiphilic derivative, it was possible to finely tune the nanotube cross-section of the mixed tubular aggregates that self-associated spontaneously in aqueous solution at pH 12. The diameter was found to vary up to 50% when the stoichiometric ratio of the two bile salts was changed. The tuning of supramolecular nanochannels with such remarkable precision is of significant interest for technological applications of these materials.


Assuntos
Ácidos e Sais Biliares/química , Nanotubos/química , Tensoativos/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Phys Chem Chem Phys ; 16(36): 19492-504, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25103526

RESUMO

Self-assembly of peptides and bile acids has been widely investigated because of their biological role and their potential as a tool for the preparation of nanostructured biomaterials. We herein report both the synthesis and the self-association behavior of a compound that combines the aggregation properties of bile acid- and amino acid-based molecules. The derivative has been prepared by introducing a L-tryptophan residue into the C-3 position of the deoxycholic acid skeleton and resulted in an amphoteric fluorescent labeled bile acid that shows a pH-dependent self-assembly. Under alkaline conditions it assembles into 28 nm diameter tubules, thus showing a completely different behavior compared to the precursor bile acid, which forms micelles under similar conditions. Upon heating the tubules break and turn into micelles, leading to an increase in the exposure to water of the tryptophan residue. On the other hand, in acidic solutions it aggregates into elongated micelles that further self-assemble forming a gel network, when an electrolyte is added.


Assuntos
Ácido Desoxicólico/química , Triptofano/química , Conformação Molecular
10.
Langmuir ; 30(22): 6358-66, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24827467

RESUMO

The introduction of a mannose residue on carbon 3 of lithocholic acid gives rise to an asymmetric and rigid bolaamphiphilic molecule, which self-assembles in water to form elongated tubular aggregates with an outer diameter of about 20 nm. These tubular structures display a temporal evolution, where the average tube diameter decreases with time, which can be followed by time-resolved small-angle X-ray scattering experiments. Cryogenic transmission electron microscopy images collected as a function of time show that at short times after preparation tubular scrolls are formed via the rolling of layers, after which a complex transformation of the scrolls into single-walled tubules takes place. At long time scales, a further evolution occurs where the tubules both elongate and become narrower. The observed self-assembly confirms the tendency of bile acids and their derivatives to form supramolecular aggregates with an ordered packing of the constituent molecules. It also demonstrates that scrolls can be formed as intermediate structures in the self-assembly process of monodisperse single-walled tubules.

11.
Chem Commun (Camb) ; 50(37): 4803-5, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24686843

RESUMO

Amide-linked side-chains can substitute for esters in crystalline nanoporous steroidal ureas (NSPUs). This efficient conjugation method increases the versatility of NPSUs, and should aid the inclusion of complex functional units in the crystal channels.

12.
J Phys Chem B ; 117(31): 9248-57, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23844889

RESUMO

Biocompatible molecules that undergo self-assembly are of high importance in biological and medical applications of nanoscience. Peptides and bile acids are among the most investigated due to their ability to self-organize into many different, often stimuli-sensitive, supramolecular structures. With the aim of preparing molecules mixing the aggregation properties of bile acid and amino acid-based molecules, we report on the synthesis and self-association behavior of two diastereomers obtained by substituting a hydroxyl group of cholic acid with a l-phenylalanine residue. The obtained molecules are amphoteric, and we demonstrate that they show a pH-dependent self-assembly. Both molecules aggregate in globular micelles at high pH, whereas they form tubular superstructures under acid conditions. Unusual narrow nanotubes with outer and inner cross-section diameters of about 6 and 3 nm are formed by the derivatives. The diasteroisomer with α orientation of the substituent forms in addition a wider tubule (17 nm cross-section diameter). The ability to pack in supramolecular tubules is explained in terms of a wedge-shaped bola-form structure of the derivatives. Parallel or antiparallel face-to-face dimers are hypothesized as fundamental building blocks for the formation of the narrow and wide nanotubes, respectively.


Assuntos
Ácidos e Sais Biliares/química , Ácidos Cólicos/química , Peptídeos/química , Fenilalanina/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Micelas , Microscopia de Força Atômica , Peptídeos/metabolismo , Tensão Superficial , Temperatura
13.
Chem Commun (Camb) ; 48(98): 12011-3, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23133832

RESUMO

An amino acid-substituted bile acid forms tubular aggregates with inner and outer diameters of about 3 and 6 nm. The diameters are unusually small for surfactant self-assembled tubes. The results enhance the spectrum of applications of supramolecular tubules and open up possibilities for investigating a novel class of biological amphiphiles.


Assuntos
Aminoácidos/química , Ácidos e Sais Biliares/química , Nanotubos/química , Fenilalanina/química , Tensoativos/química , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA