Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 12(7): 1822-1840, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407276

RESUMO

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.


Assuntos
Antineoplásicos , Nanopartículas , Ftalazinas , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Combinação de Medicamentos , Linhagem Celular Tumoral
2.
J Mater Chem B ; 10(20): 3895-3905, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470847

RESUMO

New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological environments. Here, we show that Passerini reactions are especially suited for the preparation of drug delivery materials, as with relatively few steps, polymers can be synthesized with functionality installed enabling drug conjugation and encapsulation, self-assembly into micellar or vesicular architectures, and with facile attachment triggerable chemistries. The polymers can be made with a variety of building blocks and assemble into nanoparticles, which are rapidly internalized in triple negative breast cancer (TNBC) cells. In addition, the polymers transport drug molecules efficiently through 3D cell cultures, and when designed with chemistries allowing pH-mediated release, exhibit greater efficacy against TNBC cells compared to the parent drug.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros/uso terapêutico , Pró-Fármacos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
J Control Release ; 335: 21-37, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33989691

RESUMO

A library of amphiphilic monomethoxypolyethylene glycol (mPEG) terminating polyaminoacid co-polymers able to self-assemble into colloidal systems was screened for the delivery and controlled release of doxorubicin (Doxo). mPEG-Glu/Leu random co-polymers were generated by Ring Opening Polymerization from 5 kDa mPEG-NH2 macroinitiator using 16:0:1, 8:8:1, 6:10:1, 4:12:1 γ-benzyl glutamic acid carboxy anhydride monomer/leucine N-carboxy anhydride monomer/PEG molar ratios. Glutamic acid was selected for chemical conjugation of Doxo, while leucine units were introduced in the composition of the polyaminoacid block as spacer between adjacent glutamic repeating units to minimize the steric hindrance that could impede the Doxo conjugation and to promote the polymer self-assembly by virtue of the aminoacid hydrophobicity. The benzyl ester protecting the γ-carboxyl group of glutamic acid was quantitatively displaced with hydrazine to yield mPEG5kDa-b-(hydGlum-r-Leun). Doxo was conjugated to the diblock co-polymers through pH-sensitive hydrazone bond. The Doxo derivatized co-polymers obtained with a 16:0:1, 8:8:1, 6:10:1 Glu/Leu/PEG ratios self-assembled into 30-40 nm spherical nanoparticles with neutral zeta-potential and CMC in the range of 4-7 µM. At pH 5.5, mimicking endosome environment, the carriers containing leucine showed a faster Doxo release than at pH 7.4, mimicking the blood conditions. Doxo-loaded colloidal formulations showed a dose dependent cytotoxicity on two cancer cell lines, CT26 murine colorectal carcinoma and 4T1 murine mammary carcinoma with IC50 slightly higher than those of free Doxo. The carrier assembled with the polymer containing 6:10:1 hydGlu/Leu/PEG molar ratio {mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10]} was selected for subsequent in vitro and in vivo investigations. Confocal imaging on CT26 cell line showed that intracellular fate of the carrier involves a lysosomal trafficking pathway. The intratumor or intravenous injection to CT26 and 4T1 subcutaneous tumor bearing mice yielded higher antitumor activity compared to free Doxo. Furthermore, mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10] displayed a better safety profile when compared to commercially available Caelyx®.


Assuntos
Portadores de Fármacos , Micelas , Animais , Preparações de Ação Retardada , Doxorrubicina , Concentração de Íons de Hidrogênio , Camundongos , Polietilenoglicóis , Polímeros
4.
Macromol Rapid Commun ; 42(6): e2000321, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33249682

RESUMO

The versatility of the Passerini three component reaction (Passerini-3CR) is herein exploited for the synthesis of an amphiphilic diblock copolymer, which self-assembles into polymersomes. Carboxy-functionalized poly(ethylene glycol) methyl ether is reacted with AB-type bifunctional monomers and tert-butyl isocyanide in a single process via Passerini-3CR. The resultant diblock copolymer (P1) is obtained in good yield and molar mass dispersity and is well tolerated in model cell lines. The Passerini-3CR versatility and reproducibility are shown by the synthesis of P2, P3, and P4 copolymers. The ability of the Passerini P1 polymersomes to incorporate hydrophilic molecules is verified by loading doxorubicin hydrochloride in P1DOX polymersomes. The flexibility of the synthesis is further demonstrated by simple post-functionalization with a dye, Cyanine-5 (Cy5). The obtained P1-Cy5 polymersomes rapidly internalize in 2D cell monolayers and penetrate deep into 3D spheroids of MDA-MB-231 triple-negative breast cancer cells. P1-Cy5 polymersomes injected systemically in healthy mice are well tolerated and no visible adverse effects are seen under the conditions tested. These data demonstrate that new, biodegradable, biocompatible polymersomes having properties suitable for future use in drug delivery can be easily synthesized by the Passerini-3CR.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Animais , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Reprodutibilidade dos Testes
5.
Artigo em Inglês | MEDLINE | ID: mdl-33155421

RESUMO

Among various types of stimuli-responsive drug delivery systems, reduction-responsive polymers have attracted great interest. In general, these systems have high stability in systemic circulation, however, they can respond quickly to differences in the concentrations of reducing species in specific physiological sites associated with a pathology. This is a particularly relevant strategy to target diseases in which hypoxic regions are present, as polymers which are sensitive to in-situ expressed antioxidant species can, through a local response, release a therapeutic at high concentration in the targeted site, and thus, improve the selectivity and efficacy of the treatment. At the same time, such reduction-responsive materials can also decrease the toxicity and side effects of certain drugs. To date, polymers containing disulfide linkages are the most investigated of the class of reduction-responsive nanocarriers, however, other groups such as selenide and diselenide have also been used for the same purpose. In this review article, we discussed the rationale behind the development of reduction-responsive polymers as drug delivery systems and highlight examples of recent progress. We include the most popular design methods to generate reduction-responsive polymeric carriers and their applications in cancer therapy, and question what areas may still need to be explored in a field with already a very large number of research articles. Finally, we consider the main challenges associated with the clinical translation of these nanocarriers and the future perspectives in this area. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Portadores de Fármacos , Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico
6.
J Control Release ; 323: 549-564, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32371266

RESUMO

Triple negative or basal-like breast cancer (TNBC) is characterised by aggressive progression, lack of standard therapies and poorer overall survival rates for patients. The bad prognosis, high rate of relapse and resistance against anticancer drugs have been associated with a highly abnormal loss of redox control in TNBC cells. Here, we developed docetaxel (DTX)-loaded micellar-like nanoparticles (MLNPs), designed to address the aberrant TNBC biology through the placement of redox responsive cross-links designed into a terpolymer. The MLNPs were derived from poly(ethyleneglycol)-b-poly(lactide)-co-poly(N3-α-ε-caprolactone) with a disulfide linker pendant from the caprolactone regions in order to cross-link adjacent chains. The terpolymer contained both polylactide and polycaprolactone to provide a balance of accessibility to reductive agents necessary to ensure stability in transit, but rapid micellar breakdown and concomitant drug release, when in breast cancer cells with increased levels of reducing agents. The empty MLNPs did not show any cytotoxicity in vitro in 2D monolayers of MDA-MB-231 (triple negative breast cancer), MCF7 (breast cancer) and MCF10A (normal breast epithelial cell line), whereas DTX-loaded reducible crosslinked MLNPs exhibited higher cytotoxicity against TNBC and breast cancer cells which present high intracellular levels of glutathione. Crosslinked and non-crosslinked MLNPs showed high and concentration-dependent cellular uptake in monolayers and tumour spheroids, including when assessed in co-cultures of TNBC cells and cancer-associated fibroblasts. DTX loaded crosslinked MLNPs showed the highest efficacy against 3D spheroids of TNBC, in addition the MLNPs also induced higher levels of apoptosis, as assessed by annexin V/PI assays and increased caspase 3/7 activity in MDA-MB-231 cells in comparison to cells treated with DTX-loaded un-crosslinked MLNP (used as a control) and free DTX. Taken together these data demonstrate that the terpolymer micellar-like nanoparticles with reducible crosslinks have high efficacy in both 2D and 3D in vitro cancer models by targeting the aberrant biology, i.e. loss of redox control of this type of tumour, thus may be promising and effective carrier systems for future clinical applications in TNBC.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Docetaxel/uso terapêutico , Humanos , Micelas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Biomater Sci ; 7(10): 4099-4111, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31355397

RESUMO

Many debilitating infections result from persistent microbial biofilms that do not respond to conventional antibiotic regimens. A potential method to treat such chronic infections is to combine agents which interfere with bacterial biofilm development together with an antibiotic in a single formulation. Here, we explore the use of a new bioresponsive polymer formulation derived from specifically modified alginate nanoparticles (NPs) in order to deliver ciprofloxacin (CIP) in combination with the quorum sensing inhibitor (QSI) 3-amino-7-chloro-2-nonylquinazolin-4(3H)-one (ACNQ) to mature Pseudomonas aeruginosa biofilms. The alginate NPs were engineered to incorporate a pH-responsive linker between the polysaccharide backbone and the QSI, and to encapsulate CIP via charge-charge interactions of the positively-charged drug with the carboxyl residues of the alginate matrix. In this way, a dual-action release of antibiotic and QSI was designed for the low-pH regions of a biofilm, involving cleavage of the QSI-linker to the alginate matrix and reduced charge-charge interactions between CIP and the polysaccharide as the alginate carboxyl side-chains protonated. When tested in a biofilm model the concomitant release of CIP + QSI from the pH-responsive nanoparticles significantly reduced the viability of the biofilm compared with CIP treatment alone. In addition, the alginate NPs were shown to penetrate deeply into P. aeruginosa biofilms, which we attribute in part to the charges of the NPs and the release of the QSI agent. Finally, we tested the formulation in both a 2D keratinocyte and a 3D ex vivo skin infection model. The dual-action bio-responsive QSI and CIP release nanoparticles effectively cleared the infection in the latter, suggesting considerable promise for combination therapeutics which prevent biofilm formation as well as effectively killing mature P. aeruginosa biofilms.


Assuntos
Ciprofloxacina/uso terapêutico , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Linhagem Celular , Ciprofloxacina/química , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/patogenicidade , Suínos
8.
Biomacromolecules ; 20(1): 90-101, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29870241

RESUMO

A Passerini three-component polymerization was performed for the synthesis of amphiphilic star-shaped block copolymers with hydrophobic cores and hydrophilic coronae. The degree of polymerization of the hydrophobic core was varied from 5 to 10 repeating units, and the side chain ends were conjugated by performing a Passerini-3CR with PEG-isocyanide and PEG-aldehyde (950 g/mol). The resulting amphiphilic star-shaped block copolymers contained thioether groups, which could be oxidized to sulfones in order to further tune the polarity of the polymer chains. The ability of the amphiphilic copolymers to act as unimolecular micellar encapsulants was tested with the water-insoluble dye Orange II, the water-soluble dye Para Red and the macrolide antibiotic azithromycin. The results showed that the new copolymers were able to retain drug cargo at pH levels corresponding to circulating blood and selectively release therapeutically effective doses of antibiotic as measured by bacterial cell kill. The polymers were also well-tolerated by differentiated THP-1 macrophages in the absence of encapsulated drugs.


Assuntos
Materiais Biocompatíveis/síntese química , Micelas , Nanopartículas/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Azitromicina/administração & dosagem , Azitromicina/química , Linhagem Celular , Liberação Controlada de Fármacos , Humanos , Monócitos/efeitos dos fármacos , Nanopartículas/efeitos adversos , Polietilenoglicóis/química , Polimerização
9.
ACS Macro Lett ; 6(7): 781-785, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35650862

RESUMO

The widespread adoption of RAFT polymerization stems partly from the ease and utility of installing a functional chain transfer agent onto the ends of the generated polymer chains. In parallel, the Passerini multicomponent reaction offers great versatility in converting a wide range of easily accessible building blocks to functional materials. In this work, we have combined the two approaches such that a single, commonly available, RAFT agent is used in Passerini reactions to generate a variety of multifunctional RAFT chain transfer agents containing ester linkages. Reactions to generate the multifunctional RAFT agents took place under mild conditions and in good yields. The resulting Passerini-RAFT agents were able to exert control over radical polymerization to generate materials of well-defined molecular weights and dispersity. Furthermore, the presence in these polymer cores of ester and amide functionality through the Passerini chemistries, provided regions in the materials which are inherently biodegradable, facilitating any subsequent biomedical applications. The work overall thus demonstrates a versatile and facile synthetic route to multi functional RAFT chain transfer agents and biodegradable polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA