Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 53: 15-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042685

RESUMO

In this work, we present new nanocomposite materials derived from segmented copolyesters, comprising ethylene terephthalate (PET) segments and dimerized linoleic acid (DLA), and nanometric cerium oxide particles (CeO2). Nanoparticles were incorporated in situ during polycondensation in various concentrations, from 0.1 up to 0.6 wt.%. It was found that preparation of nanocomposites in situ, during polycondensation, had no significant influence on changes in segmental composition as determined from (1)H and (13)C, as well as 2D NMR. Thermal analysis and calculated degree of crystallinity showed that increasing concentration of ceria nanoparticles lead to an increase in mass content of PET crystallites in hard segments. The XRD investigations also showed an increased intensity of characteristic signals with increasing ceria concentration. Simultaneously, the incorporation of CeO2 led to an increase in tensile strength and elongation at break, indicating a reinforcing and plasticizing effect of ceria nanoparticles. However, the modulus at 10% strain decreased with increasing amount of nanoparticles. The in vitro culture of human cardiac progenitor cells (hCPCs) on the new materials indicated a homogenous cell displacement across the samples after 5 days with no signs of cytotoxicity, indicating good biocompatibility in vitro of CeO2-based nanocomposites and a potential for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Cério/química , Nanopartículas Metálicas/química , Nanocompostos/química , Poliésteres/química , Idoso , Idoso de 80 Anos ou mais , Materiais Biocompatíveis/toxicidade , Forma Celular/efeitos dos fármacos , Células Cultivadas , Cério/toxicidade , Feminino , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Pessoa de Meia-Idade , Nanocompostos/toxicidade , Poliésteres/toxicidade , Viscosidade
2.
J Phys Chem B ; 110(32): 15817-23, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16898731

RESUMO

The thermal and structural stability of sulfonated cross-linked PEEK (polyether ether ketone) and its silicon-containing class II hybrid derivatives were characterized by combination of mass spectrometry, infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Thermodynamic properties of the hybrids were determined, including glass-transition temperature, degree of crystallinity, and thermal stability. The decomposition processes of the hybrid polymers could be consistently interpreted and their energetics quantitatively determined. The introduction of inorganic silanol moieties improves the thermal stability compared to sulfonated products.


Assuntos
Cetonas/química , Polímeros/química , Temperatura , Termodinâmica , Condutividade Elétrica , Estrutura Molecular , Prótons
3.
Adv Space Res ; 33(8): 1352-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15803627

RESUMO

The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions.


Assuntos
Encéfalo/efeitos da radiação , Radiação Cósmica , Luz , Retina/efeitos da radiação , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Ausência de Peso , Adaptação à Escuridão , Eletrofisiologia , Desenho de Equipamento , Meio Ambiente Extraterreno , Humanos , Monitorização Fisiológica , Fosfenos , Estimulação Luminosa , Monitoramento de Radiação , Pesquisa
4.
Adv Space Res ; 31(1): 141-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12577991

RESUMO

The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Assuntos
Sistema Nervoso Central/efeitos da radiação , Radiação Cósmica , Fosfenos , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Ausência de Peso , Adaptação Fisiológica , Medicina Aeroespacial/instrumentação , Sistema Nervoso Central/fisiologia , Eletroencefalografia , Desenho de Equipamento , Dispositivos de Proteção da Cabeça , Humanos , Monitorização Fisiológica/instrumentação , Estimulação Luminosa , Doses de Radiação , Retina/fisiologia , Retina/efeitos da radiação
5.
Phys Med ; 17 Suppl 1: 255-7, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11776990

RESUMO

The ALTEA project studies the problems related to possible functional damage to the Central Nervous System (CNS) due to particle radiation in space environment. The project is a large international and multi-disciplinary collaboration. The ALTEA instrumentation is an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and the passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in February 2003. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.


Assuntos
Radiação Cósmica , Olho/efeitos da radiação , Luz , Fosfenos , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Medicina Aeroespacial/instrumentação , Adaptação à Escuridão/efeitos da radiação , Eletroencefalografia , Desenho de Equipamento , Meio Ambiente Extraterreno , Humanos , Estimulação Luminosa/instrumentação , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA