Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
2.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229079

RESUMO

Fatal opioid overdoses in the United States have nearly tripled during the past decade, with greater than 92% involving a synthetic opioid like fentanyl. Fentanyl potently activates the µ-opioid receptor to induce both analgesia and respiratory depression. The danger of illicit fentanyl has recently been exacerbated by adulteration with xylazine, an α2-adrenergic receptor agonist typically used as a veterinary anesthetic. In 2023, over a 1,000% increase in xylazine-positive overdoses was reported in some regions of the U.S. Xylazine has been shown to potentiate the lethality of fentanyl in mice, yet a mechanistic underpinning for this effect has not been defined. Herein, we evaluate fentanyl, xylazine, and their combination in whole-body plethysmography (to measure respiration) and pulse oximetry (to measure blood oxygen saturation and heart rate) in male and female CD-1 mice. We show that xylazine decreases breathing rate more than fentanyl by increasing the expiration time. In contrast, fentanyl primarily reduces breathing by inhibiting inspiration, and xylazine exacerbates these effects. Fentanyl but not xylazine decreased blood oxygen saturation, and when combined, xylazine did not change the maximum level of fentanyl-induced hypoxia. Xylazine also reduced heart rate more than fentanyl. Finally, loss in blood oxygen saturation correlated with the frequency of fentanyl-induced apneas, but not breathing rate. Together, these findings provide insight into how the addition of xylazine to illicit fentanyl may increase the risk of overdose.

3.
ACS Chem Neurosci ; 15(15): 2830-2841, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38994846

RESUMO

Opioid-related overdoses account for almost half of all drug overdose deaths in the United States and cause more preventable deaths every year than car crashes. Fentanyl, a highly potent mu opioid receptor (MOR) agonist and its analogues (fentalogues) are increasingly found in illicit drug samples, both where the primary drug of abuse is an opioid and where it is not. The prevalence of fentalogues in the illicit drug market is thought to be the primary driver of the increased number of opioid-related overdose deaths since 2016. In fact, fentanyl and its analogues are involved in more than 70% of opioid-related overdoses. The standard opioid overdose rescue therapy naloxone is often insufficient to reverse opioid overdoses caused by fentalogue agonists under current treatment paradigms. However, the pharmacology of many fentalogues is unknown. Moreover, within the fentalogue series of compounds, it is possible that antagonists could be identified that might be superior to naloxone as opioid overdose reversal agents. In this report, we explore the pharmacology of 70 fentalogues and identify compounds that behave as MOR antagonists in vitro and demonstrate with one of these reversals of fentanyl-induced respiratory depression in the mouse. Such compounds could provide leads for the development of effective agents for the reversal of opioid overdose.


Assuntos
Analgésicos Opioides , Fentanila , Naloxona , Antagonistas de Entorpecentes , Overdose de Opiáceos , Fentanila/farmacologia , Fentanila/análogos & derivados , Animais , Overdose de Opiáceos/tratamento farmacológico , Camundongos , Antagonistas de Entorpecentes/farmacologia , Analgésicos Opioides/farmacologia , Relação Estrutura-Atividade , Naloxona/farmacologia , Receptores Opioides mu/metabolismo , Humanos , Masculino
4.
Front Pharmacol ; 14: 1230053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469877

RESUMO

Introduction: There is a major societal need for analgesics with less tolerance, dependence, and abuse liability. Preclinical rodent studies suggest that bifunctional ligands with both mu (MOPr) and delta (DOPr) opioid peptide receptor activity may produce analgesia with reduced tolerance and other side effects. This study explores the structure-activity relationships (SAR) of our previously reported MOPr/DOPr lead, benzylideneoxymorphone (BOM) with C7-methylene-substituted analogs. Methods: Analogs were synthesized and tested in vitro for opioid receptor binding and efficacy. One compound, nitro-BOM (NBOM, 12) was evaluated for antinociceptive effects in the warm water tail withdrawal assay in C57BL/6 mice. Acute and chronic antinociception was determined, as was toxicologic effects on chronic administration. Molecular modeling experiments were performed using the Site Identification by Ligand Competitive Saturation (SILCS) method. Results: NBOM was found to be a potent MOPr agonist/DOPr partial agonist that produces high-efficacy antinociception. Antinociceptive tolerance was observed, as was weight loss; this toxicity was only observed with NBOM and not with BOM. Modeling supports the hypothesis that the increased MOPr efficacy of NBOM is due to the substituted benzylidene ring occupying a nonpolar region within the MOPr agonist state. Discussion: Though antinociceptive tolerance and non-specific toxicity was observed on repeated administration, NBOM provides an important new tool for understanding MOPr/DOPr pharmacology.

5.
Mol Pharmacol ; 103(5): 274-285, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868791

RESUMO

The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown. In the present study, we describe the development and application of a mixed-solvent molecular dynamics (MixMD)-based method for the identification of allosteric sites on GPCRs. The method employs small organic probes with druglike qualities to identify druggable hotspots in multiple replicate short-timescale simulations. As proof of principle, we first applied the method retrospectively to a test set of five GPCRs (cannabinoid receptor type 1, C-C chemokine receptor type 2, M2 muscarinic receptor, P2Y purinoceptor 1, and protease-activated receptor 2) with known allosteric sites in diverse locations. This resulted in the identification of the known allosteric sites on these receptors. We then applied the method to the µ-opioid receptor. Several allosteric modulators for this receptor are known, although the binding sites for these modulators are not known. The MixMD-based method revealed several potential allosteric sites on the mu-opioid receptor. Implementation of the MixMD-based method should aid future efforts in the structure-based drug design of drugs targeting allosteric sites on GPCRs. SIGNIFICANCE STATEMENT: Allosteric modulation of G protein-coupled receptors (GPCRs) has the potential to provide more selective drugs. However, there are limited structures of GPCRs bound to allosteric modulators, and obtaining such structures is problematic. Current computational methods utilize static structures and therefore may not identify hidden or cryptic sites. Here we describe the use of small organic probes and molecular dynamics to identify druggable allosteric hotspots on GPCRs. The results reinforce the importance of protein dynamics in allosteric site identification.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Sítio Alostérico , Solventes/química , Regulação Alostérica , Estudos Retrospectivos , Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Receptor Muscarínico M2 , Receptores Opioides , Ligantes
6.
Br J Pharmacol ; 180(7): 793-796, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813266

RESUMO

LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Epidemia de Opioides
7.
J Gen Physiol ; 155(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538657

RESUMO

The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.


Assuntos
Células Cromafins , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo
8.
J Pharmacol Exp Ther ; 384(3): 343-352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456196

RESUMO

Major depressive disorder is a highly common disorder, with a lifetime prevalence in the United States of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability. Thus, there is a need for safe, fast-acting antidepressant drugs. The opioid buprenorphine shows promise but also has abuse liability due to its mu-agonist component. Preclinical evidence indicates that the delta-opioid system contributes to mood disorders, and delta-opioid agonists are effective in preclinical models of depression- and anxiety-like states. In this study, we test the hypothesis that the mu-opioid antagonist diprenorphine by virtue of its partial delta opioid agonist activity may offer a beneficial profile for an antidepressant medication without abuse liability. Diprenorphine was confirmed to bind with high affinity to all three opioid receptors, and functional experiments for G protein activation verified diprenorphine to be a partial agonist at delta- and kappa-opioid receptors and a mu-antagonist. Studies in C57BL/6 mice demonstrated that an acute dose of diprenorphine produced antidepressant-like effects in the tail suspension test and the novelty-induced hypophagia test that were inhibited in the presence of the delta-selective antagonist, naltrindole. Diprenorphine did not produce convulsions, a side effect of many delta agonists but rather inhibited convulsions caused by the full delta agonist SNC80; however, diprenorphine did potentiate pentylenetetrazole-induced convulsions. Diprenorphine, and compounds with a similar pharmacological profile, may provide efficient and safe rapidly acting antidepressants. SIGNIFICANCE STATEMENT: The management of major depressive disorder, particularly treatment-resistant depression, is a significant unmet medical need. Here we show that the opioid diprenorphine, a compound with mu-opioid receptor antagonist activity and delta- and kappa-opioid receptor partial agonist activities, has rapid onset antidepressant-like activity in animal models. Diprenorphine and compounds with a similar pharmacological profile to diprenorphine should be explored as novel antidepressant drugs.


Assuntos
Analgésicos Opioides , Transtorno Depressivo Maior , Diprenorfina , Animais , Camundongos , Analgésicos Opioides/farmacologia , Antidepressivos/farmacologia , Diprenorfina/farmacologia , Camundongos Endogâmicos C57BL , Receptores Opioides , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Convulsões/induzido quimicamente
9.
ACS Chem Neurosci ; 13(21): 3108-3117, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36223082

RESUMO

The opioid crisis continues to claim many lives, with a particular issue being the ready availability and use (whether intentional or accidental) of fentanyl and fentanyl analogues. Fentanyl is both potent and longer-acting than naloxone, the standard of care for overdose reversal, making it especially deadly. Consequently, there is interest in opioid reversal agents that are better able to counter its effects. The orvinol series of ligands are known for their high-affinity binding to opioid receptors and often extended duration of action; generally, compounds on this scaffold show agonist activity at the kappa and the mu-opioid receptor. Diprenorphine is an unusual member of this series being an antagonist at mu and only a partial agonist at kappa-opioid receptors. In this study, an orvinol antagonist, 14, was designed and synthesized that shows no agonist activity in vitro and is at least as good as naloxone at reversing the effects of mu-opioid receptor agonists in vivo.


Assuntos
Antagonistas de Entorpecentes , Overdose de Opiáceos , Humanos , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/metabolismo , Naloxona/farmacologia , Receptores Opioides kappa/metabolismo , Receptores Opioides/metabolismo , Fentanila/farmacologia , Analgésicos Opioides/farmacologia
10.
ACS Pharmacol Transl Sci ; 5(9): 694-709, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36110374

RESUMO

G protein-coupled receptors (GPCRs) are highly druggable targets that adopt numerous conformations. A ligand's ability to stabilize specific conformation(s) of its cognate receptor determines its efficacy or ability to produce a biological response. Identifying ligands that produce different receptor conformations and potentially discrete pharmacological effects (e.g., biased agonists, partial agonists, antagonists, allosteric modulators) is a major goal in drug discovery and necessary to develop drugs with better effectiveness and fewer side effects. Fortunately, direct measurements of ligand efficacy, via receptor conformational changes are possible with the recent development of conformational biosensors. In this review, we discuss classical efficacy models, including the two-state model, the ternary-complex model, and multistate models. We describe how nanobody-, transducer-, and receptor-based conformational biosensors detect and/or stabilize specific GPCR conformations to identify ligands with different levels of efficacy. In particular, conformational biosensors provide the potential to identify and/or characterize therapeutically desirable but often difficult to measure conformations of receptors faster and better than current methods. For drug discovery/development, several recent proof-of-principle studies have optimized conformational biosensors for high-throughput screening (HTS) platforms. However, their widespread use is limited by the fact that few sensors are reliably capable of detecting low-frequency conformations and technically demanding assay conditions. Nonetheless, conformational biosensors do help identify desirable ligands such as allosteric modulators, biased ligands, or partial agonists in a single assay, representing a distinct advantage over classical methods.

11.
Behav Pharmacol ; 33(6): 377-394, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947066

RESUMO

Drugs targeting mu opioid receptors are the mainstay of clinical practice for treating moderate-to-severe pain. While they can offer excellent analgesia, their use can be limited by adverse effects, including constipation, respiratory depression, tolerance, and abuse liability. Multifunctional ligands acting at mu opioid and nociceptin/orphanin FQ peptide receptors might provide antinociception with substantially improved adverse-effect profiles. This study explored one of these ligands, OREX-1038 (BU10038), in several assays in rodents and nonhuman primates. Binding and functional studies confirmed OREX-1038 to be a low-efficacy agonist at mu opioid and nociceptin/orphanin FQ peptide receptors and an antagonist at delta and kappa opioid receptors with selectivity for opioid receptors over other proteins. OREX-1038 had long-acting antinociceptive effects in postsurgical and complete Freund's adjuvant (CFA)-induced thermal hyperalgesia assays in rats and a warm water tail-withdrawal assay in monkeys. OREX-1038 was active for at least 24 h in each antinociception assay, and its effects in monkeys did not diminish over 22 days of daily administration. This activity was coupled with limited effects on physiological signs (arterial pressure, heart rate, and body temperature) and no evidence of withdrawal after administration of naltrexone or discontinuation of treatment in monkeys receiving OREX-1038 daily. Over a range of doses, OREX-1038 was only transiently self-administered, which diminished rapidly to nonsignificant levels; overall, both OREX-1038 and buprenorphine maintained less responding than remifentanil. These results support the concept of dual mu and nociceptin/orphanin FQ peptide receptor partial agonists having improved pharmacological profiles compared with opioids currently used to treat pain.


Assuntos
Analgésicos Opioides , Dor , Analgésicos Opioides/efeitos adversos , Animais , Isoquinolinas , Naltrexona/análogos & derivados , Dor/tratamento farmacológico , Fenilpropionatos , Ratos , Receptores Opioides/agonistas , Receptores Opioides mu/agonistas
12.
Sci Rep ; 12(1): 5320, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351926

RESUMO

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins. We compared drugs between binding sites and filtered out compounds that had no reported activity in an in vitro screen against SARS-CoV-2 infection of human liver (Huh-7) cells. This identified 17 "high-confidence", and 97 "medium-confidence" drug-site pairs. The "high-confidence" group was subjected to molecular dynamics simulations to yield six compounds with stable binding poses at their optimal target proteins. Three drugs-amprenavir, levomefolic acid, and calcipotriol-were predicted to bind to 3 different sites on the spike protein, domperidone to the Mac1 domain of the non-structural protein (Nsp) 3, avanafil to Nsp15, and nintedanib to the nucleocapsid protein involved in packaging the viral RNA. Our "two-way" virtual docking screen also provides a framework to prioritize drugs for testing in future emergencies requiring rapidly available clinical drugs and/or treating diseases where a moderate number of targets are known.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Proteínas do Nucleocapsídeo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Humanos , Proteínas do Nucleocapsídeo/antagonistas & inibidores , RNA Viral , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
13.
Front Chem ; 9: 671483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692635

RESUMO

Allosteric modulators (AMs) of G-protein coupled receptors (GPCRs) are desirable drug targets because they can produce fewer on-target side effects, improved selectivity, and better biological specificity (e.g., biased signaling or probe dependence) than orthosteric drugs. An underappreciated source for identifying AM leads are peptides and proteins-many of which were evolutionarily selected as AMs-derived from endogenous protein-protein interactions (e.g., transducer/accessory proteins), intramolecular receptor contacts (e.g., pepducins or extracellular domains), endogenous peptides, and exogenous libraries (e.g., nanobodies or conotoxins). Peptides offer distinct advantages over small molecules, including high affinity, good tolerability, and good bioactivity, and specific disadvantages, including relatively poor metabolic stability and bioavailability. Peptidomimetics are molecules that combine the advantages of both peptides and small molecules by mimicking the peptide's chemical features responsible for bioactivity while improving its druggability. This review 1) discusses sources and strategies to identify peptide/peptidomimetic AMs, 2) overviews strategies to convert a peptide lead into more drug-like "peptidomimetic," and 3) critically analyzes the advantages, disadvantages, and future directions of peptidomimetic AMs. While small molecules will and should play a vital role in AM drug discovery, peptidomimetics can complement and even exceed the advantages of small molecules, depending on the target, site, lead, and associated factors.

14.
J Comput Chem ; 42(30): 2170-2180, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494289

RESUMO

Regulator of G protein signaling 4 (RGS4) is an intracellular protein that binds to the Gα subunit ofheterotrimeric G proteins and aids in terminating G protein coupled receptor signaling. RGS4 has been implicated in pain, schizophrenia, and the control of cardiac contractility. Inhibitors of RGS4 have been developed but bind covalently to cysteine residues on the protein. Therefore, we sought to identify alternative druggable sites on RGS4 using mixed-solvent molecular dynamics simulations, which employ low concentrations of organic probes to identify druggable hotspots on the protein. Pseudo-ligands were placed in consensus hotspots, and perturbation with normal mode analysis led to the identification and characterization of a putative allosteric site, which would be invaluable for structure-based drug design of non-covalent, small molecule inhibitors. Future studies on the mechanism of this allostery will aid in the development of novel therapeutics targeting RGS4.


Assuntos
Sítio Alostérico , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas RGS/química , Calmodulina/metabolismo , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Fosfatidilinositóis/metabolismo
16.
Mol Pharmacol ; 100(3): 217-223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34135098

RESUMO

Regulators of G protein signaling (RGS) proteins modulate signaling by G protein-coupled receptors. Using a knock-in transgenic mouse model with a mutation in Gαo that does not bind RGS proteins (RGS-insensitive), we determined the effect of RGS proteins on presynaptic µ opioid receptor (MOR)-mediated inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). The MOR agonists [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and met-enkephalin (ME) inhibited evoked inhibitory postsynaptic currents (eIPSCs) in the RGS-insensitive mice compared with wild-type (WT) littermates, respectively. Fentanyl inhibited eIPSCs similarly in both WT and RGS-insensitive mice. There were no differences in opioid agonist inhibition of spontaneous GABA release between the genotypes. To further probe the mechanism underlying these differences between opioid inhibition of evoked and spontaneous GABA release, specific myristoylated Gα peptide inhibitors for Gαo1 and Gαi1-3 that block receptor-G protein interactions were used to test the preference of agonists for MOR-Gα complexes. The Gαo1 inhibitor reduced DAMGO inhibition of eIPSCs, but Gαi1-3 inhibitors had no effect. Both Gαo1 and Gαi1-3 inhibitors separately reduced fentanyl inhibition of eIPSCs but had no effects on ME inhibition. Gαi1-3 inhibitors blocked the inhibitory effects of ME and fentanyl on miniature postsynaptic current (mIPSC) frequency, but both Gαo1 and Gαi1-3 inhibitors were needed to block the effects of DAMGO. Finally, baclofen-mediated inhibition of GABA release is unaffected in the RGS-insensitive mice and in the presence of Gαo1 and Gαi1-3 inhibitor peptides, suggesting that GABAB receptor coupling to G proteins in vlPAG presynaptic terminals is different than MOR coupling. SIGNIFICANCE STATEMENT: Presynaptic µ opioid receptors (MORs) in the ventrolateral periaqueductal gray are critical for opioid analgesia and are negatively regulated by RGS proteins. These data in RGS-insensitive mice provide evidence that MOR agonists differ in preference for Gαo versus Gαi and regulation by RGS proteins in presynaptic terminals, providing a mechanism for functional selectivity between agonists. The results further define important differences in MOR and GABAB receptor coupling to G proteins that could be exploited for new pain therapies.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores Opioides mu/fisiologia , Ácido gama-Aminobutírico/metabolismo , Analgésicos Opioides/farmacologia , Animais , Baclofeno/farmacologia , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Proteínas RGS/metabolismo , Receptores de GABA-B/metabolismo , Receptores Opioides mu/agonistas
17.
J Pharmacol Exp Ther ; 378(3): 287-299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183434

RESUMO

There are no Food and Drug Administration-approved medications for cocaine use disorder, including relapse. The µ-opioid receptor (MOPr) partial agonist buprenorphine alone or in combination with naltrexone has been shown to reduce cocaine-positive urine tests and cocaine seeking in rodents. However, there are concerns over the abuse liability of buprenorphine. Buprenorphine's partial agonist and antagonist activity at the nociception receptor (NOPr) and κ-opioid receptor (KOPr), respectively, may contribute to its ability to inhibit cocaine seeking. Thus, we hypothesized that a buprenorphine derivative that exhibits antagonist activity at MOPr and KOPr with enhanced agonist activity at the NOPr could provide a more effective treatment. Here we compare the pharmacology of buprenorphine and two analogs, BU10119 and BU12004, in assays for antinociception and for cocaine- and stress-primed reinstatement in the conditioned place preference paradigm. In vitro and in vivo assays showed that BU10119 acts as an antagonist at MOPr, KOPr, and δ-opioid receptor (DOPr) and a partial agonist at NOPr, whereas BU12004 showed MOPr partial agonist activity and DOPr, KOPr, and NOPr antagonism. BU10119 and buprenorphine but not BU12004 lessened cocaine-primed reinstatement. In contrast, BU10119, BU12004, and buprenorphine blocked stress-primed reinstatement. The selective NOPr agonist SCH221510 but not naloxone decreased cocaine-primed reinstatement. Together, these findings are consistent with the concept that NOPr agonism contributes to the ability of BU10119 and buprenorphine to attenuate reinstatement of cocaine-conditioned place preference in mice. The findings support the development of buprenorphine analogs lacking MOPr agonism with increased NOPr agonism for relapse prevention to cocaine addiction. SIGNIFICANCE STATEMENT: There are no Food and Drug Administration-approved medications for cocaine use disorder. Buprenorphine has shown promise as a treatment for cocaine relapse prevention; however, there are concerns over the abuse liability of buprenorphine. Here we show a buprenorphine analogue, BU10119, which lacks µ-opioid receptor agonism and inhibits cocaine-primed and stress-primed reinstatement in a conditioned place-preference paradigm. The results suggest the development of BU10119 for the management of relapse to cocaine seeking.


Assuntos
Cocaína , Buprenorfina , Naltrexona , Receptores Opioides mu
18.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846240

RESUMO

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than ß-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


Assuntos
Regulação Alostérica/fisiologia , Dor/tratamento farmacológico , Receptores Opioides mu/metabolismo , Regulação Alostérica/efeitos dos fármacos , Analgesia/métodos , Analgésicos , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetulus , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Morfina , Antagonistas de Entorpecentes , Manejo da Dor/métodos , Estudo de Prova de Conceito , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/efeitos dos fármacos
19.
ACS Chem Neurosci ; 12(1): 216-233, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346631

RESUMO

We previously described the development of potent µ-opioid receptor (MOR)-agonist/δ-opioid receptor (DOR)-antagonist peptidomimetic ligands as an approach toward effective analgesics with reduced side effects. In this series, a tetrahydroquinoline (THQ) or substituted phenyl is employed to link two key pharmacophore elements, a dimethyltyrosine amino acid and typically an aromatic pendant. Using new and previously reported analogues, we constructed a structure-activity relationship (SAR) matrix that probes the utility of previously reported amine pendants. This matrix reveals that the MOR-agonist/DOR-antagonist properties of these ligands do not change when a tetrahydroisoquinoline (THIQ) pendant is used, despite removal of substituents on the core phenyl ring. Based on this observation, we retained the THIQ pendant and replaced the phenyl core with simpler aliphatic chain structures. These simpler analogues proved to be potent MOR-agonists with high variability in their effects at the DOR and the κ-opioid receptor (KOR). These data show that the amine of the THIQ pendant may be a novel pharmacophore element that favors high MOR-efficacy, whereas the aromatic ring of the THIQ pendant may produce high MOR-potency. Combined, the two pharmacophores within the THIQ pendant may be a structurally efficient means of converting opioid peptides and peptidomimetics into potent and efficacious MOR-agonists.


Assuntos
Peptidomiméticos , Aminas , Analgésicos Opioides/farmacologia , Peptidomiméticos/farmacologia , Receptores Opioides delta , Receptores Opioides kappa , Receptores Opioides mu , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA