Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Cell Death Dis ; 12(1): 27, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414460

RESUMO

Senescence is an antiproliferative mechanism that can suppress tumor development and can be induced by oncogenes such as genes of the Ras family. Although studies have implicated bioactive sphingolipids (SL) in senescence, the specific mechanisms remain unclear. Here, using MCF10A mammary epithelial cells, we demonstrate that oncogenic K-Ras (Kirsten rat sarcoma viral oncogene homolog) is sufficient to induce cell transformation as well as cell senescence-as revealed by increases in the percentage of cells in the G1 phase of the cell cycle, p21WAF1/Cip1/CDKN1A (p21) expression, and senescence-associated ß-galactosidase activity (SA-ß-gal). Furthermore, oncogenic K-Ras altered SL metabolism, with an increase of long-chain (LC) C18, C20 ceramides (Cer), and very-long-chain (VLC) C22:1, C24 Cer, and an increase of sphingosine kinase 1 (SK1) expression. Since Cer and sphingosine-1-phosphate have been shown to exert opposite effects on cellular senescence, we hypothesized that targeting SK1 could enhance oncogenic K-Ras-induced senescence. Indeed, SK1 downregulation or inhibition enhanced p21 expression and SA-ß-gal in cells expressing oncogenic K-Ras and impeded cell growth. Moreover, SK1 knockdown further increased LC and VLC Cer species (C18, C20, C22:1, C24, C24:1, C26:1), especially the ones increased by oncogenic K-Ras. Fumonisin B1 (FB1), an inhibitor of ceramide synthases (CerS), reduced p21 expression induced by oncogenic K-Ras both with and without SK1 knockdown. Functionally, FB1 reversed the growth defect induced by oncogenic K-Ras, confirming the importance of Cer generation in the senescent phenotype. More specifically, downregulation of CerS2 by siRNA blocked the increase of VLC Cer (C24, C24:1, and C26:1) induced by SK1 knockdown and phenocopied the effects of FB1 on p21 expression. Taken together, these data show that targeting SK1 is a potential therapeutic strategy in cancer, enhancing oncogene-induced senescence through an increase of VLC Cer downstream of CerS2.


Assuntos
Senescência Celular , Ceramidas/metabolismo , Genes ras , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Humanos
3.
FASEB J ; 35(2): e21284, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484475

RESUMO

It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.


Assuntos
Adaptação Fisiológica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteólise , Serina/deficiência , Regulação para Baixo , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Cell Signal ; 79: 109875, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290840

RESUMO

Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.


Assuntos
Envelhecimento/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Envelhecimento/genética , Envelhecimento/patologia , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Laboratórios , Lisofosfolipídeos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Esfingolipídeos/genética , Esfingosina/genética , Esfingosina/metabolismo
5.
J Lipid Res ; 60(4): 819-831, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30573560

RESUMO

Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Redes e Vias Metabólicas , Esfingolipídeos/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Esfingolipídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
J Clin Invest ; 128(7): 2702-2712, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30108193

RESUMO

Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.


Assuntos
Envelhecimento/metabolismo , Esfingolipídeos/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/metabolismo , Senescência Celular/fisiologia , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Lisofosfolipídeos/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
Br J Pharmacol ; 172(1): 106-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25176316

RESUMO

BACKGROUND AND PURPOSE: Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. EXPERIMENTAL APPROACH: Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. KEY RESULTS: Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. CONCLUSION AND IMPLICATIONS: These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL.


Assuntos
Lipoproteínas LDL , Lisofosfolipídeos/metabolismo , Neovascularização Fisiológica/fisiologia , Esfingosina/análogos & derivados , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/imunologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/efeitos dos fármacos , Esfingosina/antagonistas & inibidores , Esfingosina/imunologia , Esfingosina/metabolismo , Esfingosina/farmacologia
8.
Hum Immunol ; 73(12): 1253-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22789624

RESUMO

Vascular smooth muscle cells (SMC) play an important role in the pathophysiology of transplant vasculopathy (TV), a major cause of late death in patients receiving an organ transplant. In this review we describe the proliferative effect in vitro and in vivo of HLA class I antibodies on human SMC. We have developed an experimental model using segments of human mesenteric arteries transplanted in the position of the infrarenal aorta in immunodeficient mice (SCID/beige). Weekly injections of transplanted mice with a monoclonal antibody towards HLA class I provoked typical lesions of TV after 6 weeks in the human graft while transplanted mice receiving an irrelevant antibody did not develop any significant lesion. In vitro, the anti-HLA antibodies were mitogenic to SMC and we showed that they activate a stress-induced signaling pathway implicating matrix metalloproteinases (MMP) and neutral sphingomyelinase 2 (nSMase-2). The proliferative effect of anti-HLA antibodies could be blocked by pharmacological inhibitors or by siRNA. Administration of pharmacological inhibitors diminished the development of TV in grafted mice injected with anti-HLA antibodies demonstrating an important role of the MMP/nSMase-2 pathway in antibody-induced TV. This observation opens new perspectives for the management of TV in clinical settings.


Assuntos
Anticorpos/imunologia , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Doenças Vasculares/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Rejeição de Enxerto/patologia , Humanos , Isoantígenos/imunologia
9.
Circulation ; 124(24): 2725-34, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22082680

RESUMO

BACKGROUND: Outcomes for organ transplantation are constantly improving because of advances in organ preservation, surgical techniques, immune clinical monitoring, and immunosuppressive treatment preventing acute transplant rejection. However, chronic rejection including transplant vasculopathy still limits long-term patient survival. Transplant vasculopathy is characterized by progressive neointimal hyperplasia leading to arterial stenosis and ischemic failure of the allograft. This work sought to decipher the manner in which the humoral immune response, mimicked by W6/32 anti-HLA antibody, contributes to transplant vasculopathy. METHODS AND RESULTS: Studies were performed in vitro on cultured human smooth muscle cells, ex vivo on human arterial segments, and in vivo in a model consisting of human arterial segments grafted into severe combined immunodeficiency/beige mice injected weekly with anti-HLA antibodies. We report that anti-HLA antibodies are mitogenic for smooth muscle cells through a signaling mechanism implicating matrix metalloproteinases (MMPs) (membrane type 1 MMP and MMP2) and neutral sphingomyelinase-2. This mitogenic signaling and subsequent DNA synthesis are blocked in smooth muscle cells silenced for MMP2 or for neutral sphingomyelinase-2 by small interfering RNAs, in smooth muscle cells transfected with a vector coding for a dominant-negative form of membrane type 1 MMP, and after treatment by pharmacological inhibitors of MMPs (Ro28-2653) or neutral sphingomyelinase-2 (GW4869). In vivo, Ro28-2653 and GW4869 reduced the intimal thickening induced by anti-HLA antibodies in human mesenteric arteries grafted into severe combined immunodeficiency/beige mice. CONCLUSIONS: These data highlight a crucial role for MMP2 and neutral sphingomyelinase-2 in vasculopathy triggered by a humoral immune response and open new perspectives for preventing transplant vasculopathy with the use of MMP and neutral sphingomyelinase inhibitors, in addition to conventional immunosuppression.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Artérias/transplante , Antígenos HLA/imunologia , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Doenças Vasculares/fisiopatologia , Compostos de Anilina/farmacologia , Animais , Anticorpos Anti-Idiotípicos/efeitos adversos , Artérias/patologia , Artérias/fisiopatologia , Compostos de Benzilideno/farmacologia , Células Cultivadas , Constrição Patológica/etiologia , Constrição Patológica/fisiopatologia , Modelos Animais de Doenças , Humanos , Hiperplasia/etiologia , Hiperplasia/fisiopatologia , Técnicas In Vitro , Metaloproteinase 14 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos SCID , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Neointima/patologia , Neointima/fisiopatologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/efeitos dos fármacos , Doenças Vasculares/etiologia , Enxerto Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA