Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Science ; 378(6615): 68-78, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201590

RESUMO

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 8 , Glioma , Isocitrato Desidrogenase , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 8/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
2.
Cancer Discov ; 12(12): 2930-2953, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36108220

RESUMO

Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE: Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Epigênese Genética , Recidiva Local de Neoplasia/genética , Carcinoma Intraductal não Infiltrante/genética , Transformação Celular Neoplásica/genética
3.
Sci Rep ; 12(1): 14438, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002557

RESUMO

The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.


Assuntos
Tratamento Farmacológico da COVID-19 , Desinfecção , Nariz , Fotoquimioterapia , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacologia , Desinfecção/métodos , Estudos de Viabilidade , Humanos , Azul de Metileno/efeitos adversos , Azul de Metileno/farmacologia , Nariz/virologia , Pandemias , RNA Viral/análise , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
4.
Gut Microbes ; 14(1): 2108281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939622

RESUMO

The small intestinal epithelial barrier inputs signals from the gut microbiota in order to balance physiological inflammation and tolerance, and to promote homeostasis. Understanding the dynamic relationship between microbes and intestinal epithelial cells has been a challenge given the cellular heterogeneity associated with the epithelium and the inherent difficulty of isolating and identifying individual cell types. Here, we used single-cell RNA sequencing of small intestinal epithelial cells from germ-free and specific pathogen-free mice to study microbe-epithelium crosstalk at the single-cell resolution. The presence of microbiota did not impact overall cellular composition of the epithelium, except for an increase in Paneth cell numbers. Contrary to expectations, pattern recognition receptors and their adaptors were not induced by the microbiota but showed concentrated expression in a small proportion of epithelial cell subsets. The presence of the microbiota induced the expression of host defense- and glycosylation-associated genes in distinct epithelial cell compartments. Moreover, the microbiota altered the metabolic gene expression profile of epithelial cells, consequently inducing mTOR signaling thereby suggesting microbe-derived metabolites directly activate and regulate mTOR signaling. Altogether, these findings present a resource of the homeostatic transcriptional and cellular impact of the microbiota on the small intestinal epithelium.


Assuntos
Microbioma Gastrointestinal , Animais , Mucosa Intestinal/metabolismo , Intestino Delgado , Camundongos , Celulas de Paneth , Serina-Treonina Quinases TOR/metabolismo
5.
Virol J ; 18(1): 99, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001180

RESUMO

BACKGROUND: Sensitive, rapid, and accessible diagnostics continue to be critical to track the COVID-19 pandemic caused by the SARS-CoV-2 virus. RT-qPCR is the gold standard test, and comparison of methodologies and reagents, utilizing patient samples, is important to establish reliable diagnostic pipelines. METHODS: Here, we assessed indirect methods that require RNA extraction with direct RT-qPCR on patient samples. Four different RNA extraction kits (Qiagen, Invitrogen, BGI and Norgen Biotek) were compared. For detection, we assessed two recently developed Taqman-based modules (BGI and Norgen Biotek), a SYBR green-based approach (NEB Luna Universal One-Step Kit) with published and newly-developed primers, and clinical results (Seegene STARMag RNA extraction system and Allplex 2019-nCoV RT-qPCR assay). We also tested and optimized direct, extraction-free detection using these RT-qPCR systems and performed a cost analysis of the different methods evaluated here. RESULTS: Most RNA isolation procedures performed similarly, and while all RT-qPCR modules effectively detected purified viral RNA, the BGI system provided overall superior performance (lower detection limit, lower Ct values and higher sensitivity), generating comparable results to original clinical diagnostic data, and identifying samples ranging from 65 copies to 2.1 × 105 copies of viral genome/µl. However, the BGI detection system is more expensive than other options tested here. With direct RT-qPCR, simply adding an RNase inhibitor greatly improved detection, without the need for any other treatments (e.g. lysis buffers or boiling). The best direct methods detected ~ 10 fold less virus than indirect methods, but this simplified approach reduced sample handling, as well as assay time and cost. CONCLUSIONS: With extracted RNA, the BGI RT-qPCR detection system exhibited superior performance over the Norgen system, matching initial clinical diagnosis with the Seegene Allplex assay. The BGI system was also suitable for direct, extraction-free analysis, providing 78.4% sensitivity. The Norgen system, however, still accurately detected samples with a clinical Ct < 33 from extracted RNA, provided significant cost savings, and was superior to SYBR green assays that exhibited reduced specificity.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Kit de Reagentes para Diagnóstico , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Humanos , Nasofaringe/virologia , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade
6.
Nat Commun ; 12(1): 1405, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658502

RESUMO

Population scale sweeps of viral pathogens, such as SARS-CoV-2, require high intensity testing for effective management. Here, we describe "Systematic Parallel Analysis of RNA coupled to Sequencing for Covid-19 screening" (C19-SPAR-Seq), a multiplexed, scalable, readily automated platform for SARS-CoV-2 detection that is capable of analyzing tens of thousands of patient samples in a single run. To address strict requirements for control of assay parameters and output demanded by clinical diagnostics, we employ a control-based Precision-Recall and Receiver Operator Characteristics (coPR) analysis to assign run-specific quality control metrics. C19-SPAR-Seq coupled to coPR on a trial cohort of several hundred patients performs with a specificity of 100% and sensitivity of 91% on samples with low viral loads, and a sensitivity of >95% on high viral loads associated with disease onset and peak transmissibility. This study establishes the feasibility of employing C19-SPAR-Seq for the large-scale monitoring of SARS-CoV-2 and other pathogens.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral
7.
Nat Commun ; 12(1): 724, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526784

RESUMO

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Assuntos
Técnicas Biossensoriais/métodos , Redes Reguladoras de Genes/genética , Glucose/análise , Ácidos Nucleicos/análise , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Técnicas Biossensoriais/instrumentação , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Glucose/metabolismo , Humanos , Ácidos Nucleicos/genética , Pandemias , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Febre Tifoide/sangue , Febre Tifoide/diagnóstico , Febre Tifoide/microbiologia
8.
Life Sci Alliance ; 3(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303588

RESUMO

Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%. These hCOs include both a radial glial stem cell compartment and electrophysiologically competent mature neurons. Moreover, we show using immunofluorescence microscopy and single-cell profiling that individual organoids display reproducible cell type compositions that are conserved upon extended culture. We expect that application of this method will provide new insights into brain development and disease processes.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia
9.
Nature ; 569(7754): 121-125, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019301

RESUMO

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Regeneração/genética , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Animais , Feminino , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Regeneração/fisiologia , Análise de Sequência de RNA
10.
Science ; 364(6438)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30898844

RESUMO

The ability to generate induced pluripotent stem cells from differentiated cell types has enabled researchers to engineer cell states. Although studies have identified molecular networks that reprogram cells to pluripotency, the cellular dynamics of these processes remain poorly understood. Here, by combining cellular barcoding, mathematical modeling, and lineage tracing approaches, we demonstrate that reprogramming dynamics in heterogeneous populations are driven by dominant "elite" clones. Clones arise a priori from a population of poised mouse embryonic fibroblasts derived from Wnt1-expressing cells that may represent a neural crest-derived population. This work highlights the importance of cellular dynamics in fate programming outcomes and uncovers cell competition as a mechanism by which cells with eliteness emerge to occupy and dominate the reprogramming niche.


Assuntos
Reprogramação Celular/fisiologia , Evolução Clonal , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Reprogramação Celular/genética , Técnicas de Reprogramação Celular , Células Clonais/citologia , DNA/genética , Fibroblastos/citologia , Camundongos , Modelos Teóricos
11.
Nat Commun ; 6: 8388, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399523

RESUMO

Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Proteínas Desgrenhadas , Embrião não Mamífero , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Microscopia Confocal , Fosfatidilinositol 3-Quinases , Fosforilação , Retina/citologia , Via de Sinalização Wnt , Proteínas de Xenopus , Xenopus laevis
12.
Am J Pathol ; 175(6): 2686-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893047

RESUMO

Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.


Assuntos
Aterosclerose/metabolismo , Calcinose/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Aorta Torácica/patologia , Aterosclerose/genética , Aterosclerose/patologia , Calcinose/genética , Calcinose/patologia , Dieta Aterogênica , Receptor com Domínio Discoidina 1 , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Túnica Íntima/metabolismo , Túnica Íntima/patologia
13.
BMC Mol Biol ; 7: 5, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16483373

RESUMO

BACKGROUND: Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. RESULTS: We developed the in vitro real-time oscillation monitoring system (IV-ROMS) by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid) have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Roralpha mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-gamma--and MAPKs (ERK, JNK, p38MAPK)-independent. CONCLUSION: Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight novel and four known molecules to be potential entrainment factors for circadian clocks, indicating that this assay system is a powerful and useful tool in initial screenings.


Assuntos
Ritmo Circadiano , Técnicas Genéticas , Oscilometria , Animais , Animais Geneticamente Modificados , Biologia/métodos , Proteínas de Ciclo Celular , Linhagem Celular , Sistemas Computacionais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hipotálamo/fisiologia , Hibridização In Situ , Técnicas In Vitro , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , PPAR gama/metabolismo , Peptídeos/química , Proteínas Circadianas Period , Fotoperíodo , Regiões Promotoras Genéticas , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Núcleo Supraquiasmático/fisiologia , Fatores de Tempo , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA