Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Physiol ; 139: 104394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35413337

RESUMO

Diapause is a pre-programmed arrest of development allowing insects to survive in unfavorable environments. In adult insects, diapause termination is often followed by a reallocation of macronutrients and a transition to reproduction, and in some insects, this transition can be achieved using narcosis with CO2. However, whether CO2narcosis and diapause act in concert to affect reproduction remains unknown. Here, we investigated the separated and combined effects of diapause and CO2on female reproduction in queens of the common eastern bumble bee Bombus impatiens. Queens were treated with CO2 following a cold storage period (zero days, two weeks, two and four months) and were compared with untreated queens at the same timepoints for survival, colony initiation, egg-laying latency, and offspring production. We found that both CO2 and a period of at least two months in cold storage induced a transition to egg laying in gynes, and as expected, survival decreased with cold storage length. When CO2 and cold storage were combined, CO2narcosis positively affected egg laying in the earlier timepoints but its impact diminished following a longer cold storage. These data suggest that the impacts of CO2narcosis and cold storage are partially additive, and application of CO2 is effective only after a short cold storage. It further demonstrates that CO2 has complex effects on insect reproduction that are independent from diapause.


Assuntos
Dióxido de Carbono , Estupor , Animais , Abelhas , Dióxido de Carbono/farmacologia , Feminino , Genes de Insetos , Oviposição , Reprodução
2.
Insects ; 12(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34442239

RESUMO

Bumble bees are key pollinators for wild and managed plants and serve as a model system in various research fields, largely due to their commercial availability. Despite their extensive use, laboratory rearing of bumble bees is often challenging, particularly during the solitary phase queens undergo before founding a colony. Using a literature survey, we demonstrate that most studies rely on commercially available species that are provided during the colony's social phase, limiting study on early phases of the life cycle and the ability to control for colony age and relatedness. Laboratory rearing is challenging since the queen solitary phase is less understood compared to the social phase. To overcome this barrier, we examined several aspects related to the queen solitary phase: the effect of age on likelihood of mating, how the timing of CO2 narcosis post-mating (a technique to bypass diapause) affects egg-laying, and whether different social cues affect the success of colony initiation. Our data show an optimum age for mating in both sexuals and decreased egg-laying latency in the presence of workers and pupae. The timing of CO2 narcosis did not significantly affect egg laying in queens. These findings can be incorporated to improve bumble bee rearing for research purposes.

3.
Conserv Physiol ; 8(1): coaa103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304588

RESUMO

In the face of insect declines, identifying phases of the life cycle when insects are particularly vulnerable to mortality is critical to conservation efforts. For numerous annual insect groups, diapause is both a key adaptation that allows survival of inhospitable conditions and a physiologically demanding life stage that can result in high rates of mortality. As bees continue to garner attention as a group experiencing high rates of decline, improving our understanding of how annual bees prepare for diapause and identifying factors that reduce survival is imperative. Here, we studied factors affecting diapause survival length and their underlying mechanisms using an economically and ecologically important annual bee species, Bombus impatiens. We examined how age and mass upon diapause onset correlate with diapause survival length, and the mechanistic role of nutrient acquisition and oxidative stress post pupal eclosion in mediating these effects. Our findings show that both age and mass were strong predictors of diapause survival length. Heavier queens or queens in the age range of ~6-17 days survived longer in diapause. Mass gain was attributed to increases in lipid, protein and glycerol amounts following pupal eclosion, and the ability to deal with oxidative stress was significantly compromised in older pre-diapause queens. Our results demonstrate that age-related shifts in bee physiology and timing of nutrient acquisition may both be critical factors driving diapause survival.

4.
J Exp Biol ; 223(Pt 9)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205359

RESUMO

Insects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionarily important. In this study, we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism and stress throughout colony development. We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg laying and ovarian activation, and reduced cold tolerance, body size, mass and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns. We suggest that a seasonal signature, innate to individual workers, the queen or the colony, is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.


Assuntos
Diapausa , Reprodução , Animais , Abelhas/genética , Feminino , Expressão Gênica , Insetos , Oviposição , Reprodução/genética
5.
Insects ; 11(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085627

RESUMO

Pollinator nutritional ecology provides insights into plant-pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species' protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant-pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant-pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA