Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Inherit Metab Dis ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433424

RESUMO

Infants born to mothers with phenylketonuria (PKU) may develop congenital abnormalities because of elevated phenylalanine (Phe) levels in the mother during pregnancy. Maintenance of blood Phe levels between 120 and 360 µmol/L reduces risks of birth defects. Sapropterin dihydrochloride helps maintain blood Phe control, but there is limited evidence on its risk-benefit ratio when used during pregnancy. Data from the maternal sub-registries-KAMPER (NCT01016392) and PKUDOS (NCT00778206; PKU-MOMs sub-registry)-were collected to assess the long-term safety and efficacy of sapropterin in pregnant women in a real-life setting. Pregnancy and infant outcomes, and the safety of sapropterin were assessed. Final data from 79 pregnancies in 57 women with PKU are reported. Sapropterin dose was fairly constant before and during pregnancy, with blood Phe levels maintained in the recommended target range during the majority (82%) of pregnancies. Most pregnancies were carried to term, and the majority of liveborn infants were reported as 'normal' at birth. Few adverse and serious adverse events were considered related to sapropterin, with these occurring in participants with high blood Phe levels. This report represents the largest population of pregnant women with PKU exposed to sapropterin. Results demonstrate that exposure to sapropterin during pregnancy was well-tolerated and facilitated maintenance of blood Phe levels within the target range, resulting in normal delivery. This critical real-world data may facilitate physicians and patients to make informed treatment decisions about using sapropterin in pregnant women with PKU and in women of childbearing age with PKU who are responsive to sapropterin.

2.
Mol Genet Metab ; 142(1): 108464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537426

RESUMO

Despite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls. The CSF concentrations and CSF/plasma ratios for glucose and lactate were found to be below normal, similar to what has been reported for glucose transporter1 (GLUT1) deficiency patients who exhibit many of the same clinical symptoms as untreated PKU patients. CSF glucose and lactate levels were negatively correlated with CSF phenylalanine (Phe), while CSF glutamine and glutamate levels were positively correlated with CSF Phe levels. Plasma glucose levels were negatively correlated with plasma Phe concentrations in PKU subjects, which partly explains the reduced CSF glucose concentrations. Although brain glucose concentrations are unlikely to be low enough to impair brain glucose utilization, it is possible that the metabolism of Phe in the brain to produce phenyllactate, which can be transported across the blood-brain barrier to the blood, may consume glucose and/or lactate to generate the carbon backbone for glutamate. This glutamate is then converted to glutamine and carries the Phe-derived ammonia from the brain to the blood. While this mechanism remains to be tested, it may explain the correlations of CSF glutamine, glucose, and lactate concentrations with CSF Phe.


Assuntos
Encéfalo , Glucose , Fenilalanina , Fenilcetonúrias , Humanos , Fenilcetonúrias/metabolismo , Fenilcetonúrias/líquido cefalorraquidiano , Glucose/metabolismo , Adulto , Masculino , Fenilalanina/líquido cefalorraquidiano , Fenilalanina/sangue , Fenilalanina/metabolismo , Feminino , Encéfalo/metabolismo , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Adulto Jovem , Glutamina/metabolismo , Glutamina/líquido cefalorraquidiano , Glutamina/sangue , Glicemia/metabolismo
3.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446577

RESUMO

Phenylketonuria (PKU) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase gene. Depending on the severity of the genetic mutation, medical treatment, and patient dietary management, elevated phenylalanine (Phe) may occur in blood and brain tissues. Research has recently shown that high Phe not only impacts the central nervous system, but also other organ systems (e.g., heart and microbiome). This study used ex vivo proton nuclear magnetic resonance (1H-NMR) analysis of urine samples from PKU patients (mean 14.9 ± 9.2 years, n = 51) to identify the impact of elevated blood Phe and PKU treatment on metabolic profiles. Our results found that 24 out of 98 urinary metabolites showed a significant difference (p < 0.05) for PKU patients compared to age-matched healthy controls (n = 51) based on an analysis of urinary metabolome. These altered urinary metabolites were related to Phe metabolism, dysbiosis, creatine synthesis or intake, the tricarboxylic acid (TCA) cycle, end products of nicotinamide-adenine dinucleotide degradation, and metabolites associated with a low Phe diet. There was an excellent correlation between the metabolome and genotype of PKU patients and healthy controls of 96.7% in a confusion matrix model. Metabolomic investigations may contribute to a better understanding of PKU pathophysiology.


Assuntos
Fenilcetonúrias , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Fenilcetonúrias/genética , Fenótipo , Genótipo , Espectroscopia de Ressonância Magnética , Fenilalanina/genética
4.
NMR Biomed ; 36(4): e4853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264537

RESUMO

There are about 1500 genetic metabolic diseases. A small number of treatable diseases are diagnosed by newborn screening programs, which are continually being developed. However, most diseases can only be diagnosed based on clinical symptoms or metabolic findings. The main biological fluids used are urine, plasma and, in special situations, cerebrospinal fluid. In contrast to commonly used methods such as gas chromatography and high performance liquid chromatography mass spectrometry, ex vivo proton spectroscopy (1 H-NMR) is not yet used in routine clinical practice, although it has been recommended for more than 30 years. Automatic analysis and improved NMR technology have also expanded the applications used for the diagnosis of inborn errors of metabolism. We provide a mini-overview of typical applications, especially in urine but also in plasma, used to diagnose common but also rare genetic metabolic diseases with 1 H-NMR. The use of computer-assisted diagnostic suggestions can facilitate interpretation of the profiles. In a proof of principle, to date, 182 reports of 59 different diseases and 500 reports of healthy children are stored. The percentage of correct automatic diagnoses was 74%. Using the same 1 H-NMR profile-targeted analysis, it is possible to apply an untargeted approach that distinguishes profile differences from healthy individuals. Thus, additional conditions such as lysosomal storage diseases or drug interferences are detectable. Furthermore, because 1 H-NMR is highly reproducible and can detect a variety of different substance categories, the metabolomic approach is suitable for monitoring patient treatment and revealing additional factors such as nutrition and microbiome metabolism. Besides the progress in analytical techniques, a multiomics approach is most effective to combine metabolomics with, for example, whole exome sequencing, to also diagnose patients with nondetectable metabolic abnormalities in biological fluids. In this mini review we also provide our own data to demonstrate the role of NMR in a multiomics platform in the field of inborn errors of metabolism.


Assuntos
Erros Inatos do Metabolismo , Criança , Recém-Nascido , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Prótons , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Computadores
6.
Metabolites ; 11(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677395

RESUMO

Monitoring phenylalanine (Phe) concentrations is critical for the management of phenylketonuria (PKU). This can be done in dried blood spots (DBS) or in EDTA plasma derived from capillary or venous blood. Different techniques are used to measure Phe, the most common being flow-injection analysis tandem mass spectrometry (FIA-MS-MS) and ion exchange chromatography (IEC). Significant differences have been reported between Phe concentrations in various sample types measured by different techniques, the cause of which is not yet understood. We measured Phe concentrations in 240 venous blood samples from 199 patients with hyperphenylalaninemia in dried blood spots, EDTA plasma and erythrocytes by FIA-MS-MS and IEC. Phe concentrations were significantly lower in erythrocytes than in plasma leading to about 19% lower Phe DBS concentrations compared with plasma independent from the method used for quantification. As most therapy recommendations for PKU patients are based on plasma concentrations reliable conversion of DBS into plasma concentrations is necessary. Variances of Phe concentrations in plasma and DBS are not linear but increases with higher concentrations indicating heteroscedasticity. We therefore suggest the slope of the 75th percentile from quantile regression as a correction factor.

7.
Orphanet J Rare Dis ; 16(1): 441, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670613

RESUMO

BACKGROUND: 5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for SMA imprecise and difficult. Therapeutic decisions and stratification of individualized therapies remain challenging, especially in symptomatic children. The aim of this proof-of-concept and feasibility study was to explore the value of 1H-nuclear magnetic resonance (NMR)-based metabolic profiling in identifying non-invasive diagnostic and prognostic urinary fingerprints in children and adolescents with SMA. RESULTS: Urine samples were collected from 29 treatment-naïve SMA patients (5 pre-symptomatic, 9 SMA 1, 8 SMA 2, 7 SMA 3), 18 patients with Duchenne muscular dystrophy (DMD) and 444 healthy controls. Using machine-learning algorithms, we propose a set of prediction models built on urinary fingerprints that showed potential diagnostic value in discriminating SMA patients from controls and DMD, as well as predictive properties in separating between SMA types, allowing predictions about phenotypic severity. Interestingly, preliminary results of the prediction models suggest additional value in determining biochemical onset of disease in pre-symptomatic infants with SMA identified by genetic newborn screening and furthermore as potential therapeutic monitoring tool. CONCLUSIONS: This study provides preliminary evidence for the use of 1H-NMR-based urinary metabolic profiling as diagnostic and prognostic biomarker in spinal muscular atrophy.


Assuntos
Atrofia Muscular Espinal , Distrofia Muscular de Duchenne , Adolescente , Criança , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Espectroscopia de Prótons por Ressonância Magnética
8.
J Pediatr ; 239: 231-234.e2, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474089

RESUMO

Many countries do not have a newborn screening (NBS) program, and immigrants from such countries are at risk for late diagnosis of phenylketonuria (PKU). In this international survey, 52 of 259 patients (20%) with late diagnosed PKU were immigrants, and 145 of the 259 (55%) were born before NBS or in a location without NBS.


Assuntos
Diagnóstico Tardio/estatística & dados numéricos , Emigrantes e Imigrantes , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Triagem Neonatal/tendências , Fenilcetonúrias/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Saúde Global , Pesquisas sobre Atenção à Saúde , Política de Saúde , Acessibilidade aos Serviços de Saúde/organização & administração , Humanos , Lactente , Recém-Nascido , Masculino , Triagem Neonatal/organização & administração , Adulto Jovem
9.
Mol Genet Metab Rep ; 27: 100764, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036045

RESUMO

This retrospective matched-cohort analysis compared health-economic burdens of adults (≥18 years; n = 377) with phenylketonuria (PKU) and age/gender-matched non-PKU controls (n = 3770) in Germany. Healthcare costs and resource-utilization were analyzed for the year 2015. Differences between groups were tested using 95% CI of mean differences (MD). PKU patients had significantly higher mean costs in total (MD €3307, 95% CI €1736-€4879), for pharmaceuticals (MD €1912, 95% CI €1195-€2629) [including dietary amino-acid supplements (MD €1268, 95% CI €864-€1672)], and outpatient costs (MD €395, 95% CI €115-€675). Inpatient costs (MD €904, 95% CI -€293 to €2100) and costs for aids and remedies (MD €97, 95% CI -€10 to €203) were also higher in PKU patients. PKU patients had more outpatient visits and stayed longer in hospital. Adult PKU patients incur higher total healthcare costs than non-PKU controls, especially regarding pharmaceuticals and outpatient costs, and more frequent resource-utilization, resulting in higher health-economic burden for the statutory healthcare system.

10.
Neurology ; 96(3): e399-e411, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33093221

RESUMO

OBJECTIVE: To evaluate the relationship between circulating phenylalanine and brain function as well as neuropsychiatric symptoms in adults with phenylketonuria. METHODS: In this prospective cross-sectional study, early-treated patients with phenylketonuria older than 30 years and age- and sex-matched controls were included. Extensive neurologic evaluation, neuropsychological and behavioral testing, sensory and motor evoked potentials, and MRI were performed. CSF concentrations of neurodegenerative markers were evaluated in addition in a subset of 10 patients. RESULTS: Nineteen patients with phenylketonuria (median age 41 years) with different phenylalanine levels (median 873 µmol/L) entered the study. They showed higher prevalence of neurologic symptoms, cognitive and behavioral abnormalities, autonomic dysfunction, alterations in neurophysiologic measures, and atrophy in putamen and right thalamus compared to controls. In CSF, patients with phenylketonuria exhibited higher ß-amyloid 1-42 (p = 0.003), total tau (p < 0.001), and phosphorylated tau (p = 0.032) levels compared to controls. Plasma phenylalanine levels highly correlated with the number of failed neuropsychological tests (r = 0.64, p = 0.003), neuropsychiatric symptoms (r = 0.73, p < 001), motor evoked potential latency (r = 0.48, p = 0.030), and parietal lobe atrophy. CONCLUSIONS: Our study provides strong evidence for a correlation between phenylalanine levels and clinical, neuropsychological, neurophysiologic, biochemical, and imaging alterations in adult patients with phenylketonuria.


Assuntos
Cognição/fisiologia , Fenilalanina/sangue , Fenilcetonúrias/sangue , Putamen/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Atrofia/sangue , Atrofia/diagnóstico por imagem , Atrofia/psicologia , Estudos Transversais , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fenilcetonúrias/diagnóstico por imagem , Fenilcetonúrias/psicologia , Estudos Prospectivos
11.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32668217

RESUMO

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Assuntos
Predisposição Genética para Doença/genética , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Genótipo , Homozigoto , Humanos , Mutação/genética , Fenótipo , Fenilalanina/sangue , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/sangue
12.
Orphanet J Rare Dis ; 15(1): 61, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32106880

RESUMO

BACKGROUND: Phenylketonuria (PKU; OMIM#261600) is a rare metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene resulting in high phenylalanine (Phe) in blood and brain. If not treated early this results in intellectual disability, behavioral and psychiatric problems, microcephaly, motor deficits, eczematous rash, autism, seizures, and developmental problems. There is a controversial discussion of whether patients with PKU have an additional risk for atherosclerosis due to interference of Phe with cholesterol synthesis and LDL-cholesterol regulation. Since cholesterol also plays a role in membrane structure and myelination, better insight into the clinical significance of the impact of Phe on lipoprotein metabolism is desirable. In 22 treated PKU patients (mean age 38.7 years) and 14 healthy controls (mean age 35.2 years), we investigated plasma with NMR spectroscopy and quantified 105 lipoprotein parameters (including lipoprotein subclasses) and 24 low molecular weight parameters. Analysis was performed on a 600 MHz Bruker AVANCE IVDr spectrometer as previously described. RESULTS: Concurrent plasma Phe in PKU patients showed a wide range with a mean of 899 µmol/L (50-1318 µmol/L). Total cholesterol and LDL-cholesterol were significantly lower in PKU patients versus controls: 179.4 versus 200.9 mg/dL (p < 0.02) and 79.5 versus 104.1 mg/dL (p < 0.0038), respectively. PKU patients also had lower levels of 22 LDL subclasses with the greatest differences in LDL2 Apo-B, LDL2 Particle Number, LDL2-phospholipids, and LDL2-cholesterol (p < 0.0001). There was a slight negative correlation of total cholesterol and LDL-cholesterol with concurrent Phe level. VLDL5-free cholesterol, VLDL5-cholesterol, VLDL5-phospholipids, and VLDL4-free cholesterol showed a significant (p < 0.05) negative correlation with concurrent Phe level. There was no difference in HDL and their subclasses between PKU patients and controls. Tyrosine, glutamine, and creatinine were significantly lower in PKU patients compared to controls, while citric and glutamic acids were significantly higher. CONCLUSIONS: Using NMR spectroscopy, a unique lipoprotein profile in PKU patients can be demonstrated which mimics a non-atherogenic profile as seen in patients treated by statins.


Assuntos
Fenilcetonúrias , Adulto , Colesterol , LDL-Colesterol , Humanos , Lipoproteínas , Espectroscopia de Ressonância Magnética , Metabolômica
13.
J Inherit Metab Dis ; 42(3): 398-406, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30706953

RESUMO

Biogenic amines synthesis in phenylketonuria (PKU) patients with high phenylalanine (Phe) concentration is thought to be impaired due to inhibition of tyrosine and tryptophan hydroxylases and competition with amino acids at the blood-brain barrier. Dopamine and serotonin deficits might explain brain damage and progressive neuropsychiatric impairment in adult PKU patients. Ten early treated adult PKU patients (mean age 38.2 years) and 15 age-matched controls entered the study. Plasma and cerebrospinal fluid (CSF) Phe, 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), 3,4-dihydroxy-l-phenylalanine (l-DOPA) and homovanillic acid (HVA) were analyzed. Voxel-based morphometry statistical nonparametric mapping was used to test the age-corrected correlation between gray matter atrophy and CSF biogenic amines levels. 5-HIAA and 5-HTP were significantly reduced in PKU patients compared to controls. Significant negative correlations were found between CSF 5-HIAA, HVA, and 5-HTP and Phe levels. A decrease in 5-HIAA and 5-HTP concentrations correlated with precuneus and frontal atrophy, respectively. Lower HVA levels correlated with occipital atrophy. Biogenic amines deficits correlate with specific brain atrophy patterns in adult PKU patients, in line with serotonin and dopamine projections. These findings may support a more rigorous Phe control in adult PKU to prevent neurotransmitter depletion and accelerated brain damage due to aging.


Assuntos
Aminas Biogênicas/líquido cefalorraquidiano , Substância Cinzenta/patologia , Ácido Homovanílico/líquido cefalorraquidiano , Fenilcetonúrias/líquido cefalorraquidiano , Adulto , Atrofia , Aminas Biogênicas/sangue , Estudos de Casos e Controles , Feminino , Ácido Homovanílico/sangue , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenilcetonúrias/sangue
14.
Genet Med ; 21(3): 580-590, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29997390

RESUMO

PURPOSE: The nature of phenylalanine hydroxylase (PAH) variants determines residual enzyme activity, which modifies the clinical phenotype in phenylketonuria (PKU). We exploited the statistical power of a large genotype database to determine the relationship between genotype and phenotype in PKU. METHODS: A total of 9336 PKU patients with 2589 different genotypes, carrying 588 variants, were investigated using an allelic phenotype value (APV) algorithm. RESULTS: We identified 251 0-variants encoding inactive PAH, and assigned APVs (0 = classic PKU; 5 = mild PKU; 10 = mild hyperphenylalaninaemia) to 88 variants in PAH-functional hemizygous patients. The genotypic phenotype values (GPVs) were set equal to the higher-APV allele, which was assumed to be dominant over the lower-APV allele and to determine the metabolic phenotype. GPVs for 8872 patients resulted in cut-off ranges of 0.0-2.7 for classic PKU, 2.8-6.6 for mild PKU and 6.7-10.0 for mild hyperphenylalaninaemia. Genotype-based phenotype prediction was 99.2% for classic PKU, 46.2% for mild PKU and 89.5% for mild hyperphenylalaninaemia. The relationships between known pretreatment blood phenylalanine levels and GPVs (n = 4217), as well as tetrahydrobiopterin responsiveness and GPVs (n = 3488), were significant (both P < 0.001). CONCLUSIONS: APV and GPV are powerful tools to investigate genotype-phenotype associations, and can be used for genetic counselling of PKU families.


Assuntos
Estudos de Associação Genética/métodos , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Alelos , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Fenilalanina Hidroxilase/fisiologia , Fenilcetonúrias/diagnóstico
15.
Am J Hum Genet ; 100(2): 257-266, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132689

RESUMO

Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH4) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH4-activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA.


Assuntos
Distonia/genética , Deficiência Intelectual/genética , Fenilcetonúrias/genética , Proteínas Repressoras/genética , Alelos , Sequência de Aminoácidos , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Estudos de Casos e Controles , Dopamina/deficiência , Dopamina/metabolismo , Éxons , Feminino , Fibroblastos/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Linhagem , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/genética , Serotonina/deficiência , Serotonina/metabolismo , Triptofano/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Mol Genet Metab Rep ; 6: 55-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27014578

RESUMO

Cobalamin C (cblC) defect is an inherited autosomal recessive disorder that affects cobalamin metabolism. Patients are treated with hydroxycobalamin to ameliorate the clinical features of early-onset disease and prevent clinical symptoms in late-onset disease. Here we describe a patient in whom prenatal maternal treatment with 30 mg/week hydroxycobalamin and 5 mg/day folic acid from week 15 of pregnancy prevented disease manifestation in a girl who is now 11 years old with normal IQ and only mild ophthalmic findings. The affected older sister received postnatal treatment only and is severely intellectually disabled with severe ophthalmic symptoms. This case highlights the potential of early, high-dose intrauterine treatment in a fetus affected by the cblC defect.

17.
Eur J Pediatr ; 175(2): 261-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26350228

RESUMO

To avoid potentially severe outcomes, phenylketonuria (PKU) must be detected as soon as possible after birth and managed with life-long treatment. A questionnaire-based survey was performed to document diagnosis and management practices for PKU in a region of Southern and Eastern Europe. Prevalence and management data were obtained from 37/59 (63 %) centres within 19/22 (86%) contacted countries (N = 8600 patients). The main results' analysis was based on completed questionnaires obtained from 31 centres (53%) within 15 countries (68%). A median of 10 % of patients per centre had been diagnosed after the newborn period. Metabolic dieticians and specialised adult PKU clinics were lacking in 36 and 84% of centres, respectively. In 26% of centres, treatment initiation was delayed until >15 days of life. Blood phenylalanine (Phe) thresholds to start treatment and upper Phe targets were inconsistent across centres. Ten percent of centres reported monitoring Phe every 2 weeks for pregnant women with PKU, which is insufficient to minimise risk of neonatal sequalae. Sapropterin dihydrochloride treatment was available in 48% of centres, with 24-h responsiveness tests most common (36%). Only one centre among the five countries lacking newborn screening provided a completed questionnaire. CONCLUSION: Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches for PKU in Southern and Eastern Europe. WHAT IS KNOWN: PKU must be detected early and optimally managed throughout life to avoid poor outcomes, yet newborn screening is not universal and diagnostic and management practices for PKU are known to vary widely between different centres and countries. Targeted efforts by health care professionals and governments are needed to optimise diagnostic and management approaches. WHAT IS NEW: PKU management practices are documented in 19 South and Eastern European countries indicating a heterogeneous situation across the region. Key areas for improvement identified in surveyed centres include a need for comprehensive screening in all countries, increased number of metabolic dietitians and specialised adult PKU clinics, delayed time to treatment initiation, appropriate Phe thresholds, Phe targets and monitoring frequencies, and universal access to currently available treatment options.


Assuntos
Triagem Neonatal/métodos , Fenilalanina/sangue , Fenilcetonúrias/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Gerenciamento Clínico , Europa (Continente) , Feminino , Pessoal de Saúde , Humanos , Lactente , Recém-Nascido , Fenilcetonúrias/epidemiologia , Fenilcetonúrias/terapia , Gravidez , Inquéritos e Questionários , Adulto Jovem
18.
J Inherit Metab Dis ; 39(1): 115-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025547

RESUMO

BACKGROUND: Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare inborn defect disturbing the remethylation of homocysteine to methionine (<200 reported cases). This retrospective study evaluates clinical, biochemical genetic and in vitro enzymatic data in a cohort of 33 patients. METHODS: Clinical, biochemical and treatment data was obtained from physicians by using a questionnaire. MTHFR activity was measured in primary fibroblasts; genomic DNA was extracted from cultured fibroblasts. RESULTS: Thirty-three patients (mean age at follow-up 11.4 years; four deceased; median age at first presentation 5 weeks; 17 females) were included. Patients with very low (<1.5%) mean control values of enzyme activity (n = 14) presented earlier and with a pattern of feeding problems, encephalopathy, muscular hypotonia, neurocognitive impairment, apnoea, hydrocephalus, microcephaly and epilepsy. Patients with higher (>1.7-34.8%) residual enzyme activity had mainly psychiatric symptoms, mental retardation, myelopathy, ataxia and spasticity. Treatment with various combinations of betaine, methionine, folate and cobalamin improved the biochemical and clinical phenotype. During the disease course, patients with very low enzyme activity showed a progression of feeding problems, neurological symptoms, mental retardation, and psychiatric disease while in patients with higher residual enzyme activity, myelopathy, ataxia and spasticity increased. All other symptoms remained stable or improved in both groups upon treatment as did brain imaging in some cases. No clear genotype-phenotype correlation was obvious. DISCUSSION: MTHFR deficiency is a severe disease primarily affecting the central nervous system. Age at presentation and clinical pattern are correlated with residual enzyme activity. Treatment alleviates biochemical abnormalities and clinical symptoms partially.


Assuntos
Homocistinúria/enzimologia , Homocistinúria/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Espasticidade Muscular/enzimologia , Espasticidade Muscular/genética , Ataxia/genética , Betaína/uso terapêutico , Criança , Feminino , Ácido Fólico/uso terapêutico , Estudos de Associação Genética/métodos , Homocistinúria/tratamento farmacológico , Humanos , Deficiência Intelectual/genética , Masculino , Metionina/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Mutação/genética , Fenótipo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/enzimologia , Transtornos Psicóticos/genética , Estudos Retrospectivos , Doenças da Medula Espinal/genética , Vitamina B 12/uso terapêutico
19.
JIMD Rep ; 23: 35-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822821

RESUMO

INTRODUCTION: Sapropterin dihydrochloride (Kuvan(®)), a synthetic 6R-diastereoisomer of tetrahydrobiopterin (BH4), is approved in Europe for the treatment of patients aged ≥4 years with hyperphenylalaninaemia (HPA) due to BH4-responsive phenylalanine hydroxylase (PAH) deficiency, in conjunction with a phenylalanine-restricted diet, and also for the treatment of patients with BH4 deficiency. AIMS/METHODS: KAMPER is an ongoing, observational, multicentre registry with the primary objective of providing information over 15 years on long-term safety of sapropterin dihydrochloride treatment in patients with HPA. Here we report initial data on characteristics from patients recruited by the time of the third interim analysis and results at 1 year. RESULTS: Overall, 325 patients from 55 sites in seven European countries were included in the analysis: 296 (91.1%) patients with PAH deficiency (median [Q1, Q3] age, 10.3 [7.2, 15.0] years) and 29 (8.9%) with BH4 deficiency (12.8 [6.6, 18.9] years). Fifty-nine patients (18.2%) were aged ≥18 years; 4 patients were pregnant. No elderly patients (aged ≥65 years) or patients with renal or hepatic insufficiency were enroled in the study. Twelve-month data were available for 164 patients with PAH deficiency and 16 with BH4 deficiency. No new safety concerns were identified as of May 2013. CONCLUSIONS: Initial data from KAMPER show that sapropterin dihydrochloride has a favourable safety profile. Registry data collected over time will provide insight into the management and outcomes of patients with PAH deficiency and BH4 deficiency, including long-term safety, impact on growth and neurocognitive outcomes and the effect of sapropterin dihydrochloride treatment on populations of special interest.

20.
Mol Genet Metab ; 114(4): 564-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25726095

RESUMO

Neonatal loading studies with tetrahydrobiopterin (BH4) are used to detect hyperphenylalaninemia due to BH4 deficiency by evaluating decreases in blood phenylalanine (Phe) concentrations post BH4 load. BH4 responsiveness in phenylalanine hydroxylase (PAH)-deficient patients introduced a new diagnostic aspect for this test. In older children, a broad spectrum of different levels of responsiveness has been described. The primary objective of this study was to develop a pharmacodynamic model to improve the description of individual sensitivity to BH4 in the neonatal period. Secondary objectives were to evaluate BH4 responsiveness in a large number of PAH-deficient patients from a neonatal screening program and in patients with various confirmed BH4 deficiencies from the BIODEF database. Descriptive statistics in patients with PAH deficiency with 0-24-h data available showed that 129 of 340 patients (37.9%) had a >30% decrease in Phe levels post load. Patients with dihydropteridine reductase deficiency (n = 53) could not be differentiated from BH4-responsive patients with PAH deficiency. The pharmacologic turnover model, "stimulation of loss" of Phe following BH4 load, fitted the data best. Using the model, 193 of 194 (99.5%) patients with a proven BH4 synthesis deficiency or recycling defect were classified as BH4 sensitive. Among patients with PAH deficiency, 216 of 375 (57.6%) patients showed sensitivity to BH4, albeit with a pronounced variability; PAH-deficient patients with blood Phe <1200 µmol/L at time 0 showed higher sensitivity than patients with blood Phe levels >1200 µmol/L. External validation showed good correlation between the present approach, using 0-24-h blood Phe data, and the published 48-h prognostic test. Pharmacodynamic modeling of Phe levels following a BH4 loading test is sufficiently powerful to detect a wide range of responsiveness, interpretable as a measure of sensitivity to BH4. However, the clinical relevance of small responses needs to be evaluated by further studies of their relationship to long-term response to BH4 treatment.


Assuntos
Biopterinas/análogos & derivados , Fenilalanina/farmacocinética , Biopterinas/administração & dosagem , Biopterinas/deficiência , Biopterinas/farmacologia , Biopterinas/uso terapêutico , Feminino , Humanos , Recém-Nascido , Masculino , Modelos Estatísticos , Triagem Neonatal , Fenilalanina/sangue , Fenilalanina Hidroxilase/deficiência , Fenilcetonúrias/sangue , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA