Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Respir Cell Mol Biol ; 49(6): 892-901, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23885834

RESUMO

Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Apoptose/efeitos dos fármacos , Amianto Amosita/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais Alveolares/fisiologia , Animais , Antioxidantes/farmacologia , Apoptose/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Compostos Organometálicos/farmacologia , Fenilbutiratos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fatores de Transcrição de Fator Regulador X , Salicilatos/farmacologia , Tapsigargina/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
2.
Am J Respir Cell Mol Biol ; 48(5): 626-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23349050

RESUMO

Elevated concentrations of CO2 (hypercapnia) lead to alveolar epithelial dysfunction by promoting Na,K-ATPase endocytosis. In the present report, we investigated whether the CO2/HCO3(-) activated soluble adenylyl cyclase (sAC) regulates this process. We found that hypercapnia increased the production of cyclic adenosine monophosphate (cAMP) and stimulated protein kinase A (PKA) activity via sAC, which was necessary for Na,K-ATPase endocytosis. During hypercapnia, cAMP was mainly produced in specific microdomains in the proximity of the plasma membrane, leading to PKA Type Iα activation. In alveolar epithelial cells exposed to high CO2 concentrations, PKA Type Iα regulated the time-dependent phosphorylation of the actin cytoskeleton component α-adducin at serine 726. Cells expressing small hairpin RNA for PKAc, dominant-negative PKA Type Iα, small interfering RNA for α-adducin, and α-adducin with serine 726 mutated to alanine prevented Na,K-ATPase endocytosis. In conclusion, we provide evidence for a new mechanism by which hypercapnia via sAC, cAMP, PKA Type Iα, and α-adducin regulates Na,K-ATPase endocytosis in alveolar epithelial cells.


Assuntos
Células Epiteliais Alveolares/enzimologia , Dióxido de Carbono/farmacologia , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Endocitose , ATPase Trocadora de Sódio-Potássio/metabolismo , Adenilil Ciclases/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/fisiologia , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/enzimologia , AMP Cíclico/metabolismo , Humanos , Hipercapnia/enzimologia , Fosforilação , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro
3.
FASEB J ; 25(11): 3873-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21803859

RESUMO

The physiological and pathophysiological implications of the expression of vimentin, a type III intermediate filament protein, in alveolar epithelial cells (AECs) are unknown. We provide data demonstrating that vimentin is regulated by TGFß1, a major cytokine released in response to acute lung injury and that vimentin is required for wound repair and remodeling of the alveolar epithelium. Quantitative real-time PCR shows a 16-fold induction of vimentin mRNA in TGFß1-treated transformed AECs. Luciferase assays identify a Smad-binding element in the 5' promoter of vimentin responsible for TGFß1-induced transcription. Notably, TGFß1 induces vimentin protein expression in AECs, which is associated with a 2.5-fold increase in cell motility, resulting in increased rates of migration and wound closure. These effects are independent of cell proliferation. TGFß1-mediated vimentin protein expression, cell migration, and wound closure are prevented by a pharmacological inhibitor of the Smad pathway and by expression of Ad-shRNA against vimentin. Conversely, overexpression of mEmerald-vimentin is sufficient for increased cell-migration and wound-closure rates. These results demonstrate that vimentin is required and sufficient for increased wound repair in an in vitro model of lung injury.


Assuntos
Vimentina/fisiologia , Cicatrização/fisiologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Alvéolos Pulmonares/citologia , Ratos , Proteínas Smad/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Vimentina/biossíntese
4.
Mol Cell Biol ; 31(17): 3546-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730292

RESUMO

To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase ß (CaMKKß)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Cálcio/metabolismo , Regulação para Baixo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Canais de Cálcio/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Hipóxia , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pulmão/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Molécula 1 de Interação Estromal
5.
Invest Clin ; 51(1): 53-63, 2010 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-20815156

RESUMO

Ischemia-reperfusion (IR) lung injury is a significant cause of morbidity and mortality in certain clinical scenarios that include transplantation, thromboendarterectomy and reexpansion injury of the lung. Edema of the contralateral lung after IR injury of one lung has been reported and this study was aimed to clarify the pathophysiology of this phenomenon. One-lung ischemia/hypoxia followed by reperfusion with either blood or an acellular plasma substitute was achieved in an isolated rabbit lung model by hilum clamping. After reperfusion, we studied the isolated effects of vasoconstriction and inflammation on contralateral lung injury by using papaverine or hydrocortisone as vasodilator and anti-inflammatory, respectively. We observed that IR of one lung induces edema of the contralateral lung. Absence of leukocytes and platelets in the perfusate or use of hydrocortisone completely inhibits IR injury. Moreover, papaverine suppresses edema of the contralateral, but not that of the reperfused lung. We concluded that IR of one lung produces edema in the contralateral lung that requires vasoconstriction of the latter.


Assuntos
Pulmão/irrigação sanguínea , Edema Pulmonar/etiologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/fisiopatologia , Vasoconstrição , Animais , Feminino , Técnicas In Vitro , Coelhos
6.
FEBS Lett ; 584(18): 3985-9, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20691686

RESUMO

Hypercapnia has been shown to impair alveolar fluid reabsorption (AFR) by decreasing Na,K-ATPase activity. Extracellular signal-regulated kinase pathway (ERK) is activated under conditions of cellular stress and has been known to regulate the Na,K-ATPase. Here, we show that hypercapnia leads to ERK activation in a time-dependent manner in alveolar epithelial cells (AEC). Inhibition of ERK by U0126 or siRNA prevented both the hypercapnia-induced Na,K-ATPase endocytosis and impairment of AFR. Moreover, ERK inhibition prevented AMPK activation, a known modulator of hypercapnia-induced Na,K-ATPase endocytosis. Accordingly, these data suggest that hypercapnia-induced Na,K-ATPase endocytosis is dependent on ERK activation in AEC and that ERK plays an important role in hypercapnia-induced impairment of AFR in rat lungs.


Assuntos
Hipercapnia/enzimologia , Pulmão/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Butadienos/farmacologia , Regulação para Baixo , Endocitose , Inibidores Enzimáticos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Fosforilação , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332111

RESUMO

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/enzimologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/enzimologia , Bovinos , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo
8.
Invest. clín ; 51(1): 53-63, Mar. 2010. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-574083

RESUMO

El daño pulmonar por isquemia-reperfusión (IR) es una importante causa de morbilidad y mortalidad en ciertas condiciones clínicas que incluyen trasplantes, tromboendarterectomía y daño pulmonar por reexpansión. El edema pulmonar contralateral posterior al daño por IR de un pulmón ha sido reportado y esta investigación tiene como objetivo esclarecer la fisiopatología de dicho fenómeno. En un modelo de pulmones aislados y perfundidos de conejo, fue ocluido el hilio pulmonar de forma unilateral induciendo isquemia/hipoxia de dicho órgano, seguido de reperfusiones con sangre o con un substituto plasmático acelular. Los efectos aislados de vasoconstricción e inflamación en el daño pulmonar contralateral fueron estudiados posterior a la reperfusión, usando papaverina e hidrocortisona como agente vasodilatador y antiinflamatorio, respectivamente. En esta investigación se observó que la IR de un pulmón induce edema en el pulmón contralateral. La ausencia de leucocitos y plaquetas en la perfusión y el uso de hidrocortisona inhibió por completo el daño por IR. La papaverina suprimió el edema en el pulmón contralateral mas no en el reperfundido. Se concluye que la IR de un pulmón produce edema en el pulmón contralateral, para lo cual se requiere la presencia de vasoconstricción.


Ischemia-reperfusion (IR) lung injury is a significant cause of morbidity and mortality in certain clinical scenarios that include transplantation, thromboendarterectomy and reexpansion injury of the lung. Edema of the contralateral lung after IR injury of one lung has been reported and this study was aimed to clarify the pathophysiology of this phenomenon. One-lung ischemia/hypoxia followed by reperfusion with either blood or an acellular plasma substitute was achieved in an isolated rabbit lung model by hilum clamping. After reperfusion, we studied the isolated effects of vasoconstriction and inflammation on contralateral lung injury by using papaverine or hydrocortisone as vasodilator and anti-inflammatory, respectively. We observed that IR of one lung induces edema of the contralateral lung. Absence of leukocytes and platelets in the perfusate or use of hydrocortisone completely inhibits IR injury. Moreover, papaverine suppresses edema of the contralateral, but not that of the reperfused lung. We concluded that IR of one lung produces edema in the contralateral lung that requires vasoconstriction of the latter.


Assuntos
Animais , Coelhos , Edema Pulmonar/patologia , Isquemia/complicações , Traumatismo por Reperfusão , Vasoconstrição , Animais de Laboratório , Pneumopatias
9.
FASEB J ; 24(7): 2178-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181940

RESUMO

Elevated blood and tissue CO(2), or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated P(CO2) on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-kappaB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-beta, which do not require NF-kappaB. Notably, hypercapnia did not affect LPS-induced degradation of IkappaB alpha, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated P(CO2) also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease.


Assuntos
Dióxido de Carbono/farmacologia , Hipercapnia/imunologia , Interleucina-6/antagonistas & inibidores , Macrófagos Alveolares/imunologia , Fagocitose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citocinas/biossíntese , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-6/biossíntese , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Fator de Necrose Tumoral alfa/biossíntese
10.
FASEB J ; 24(2): 374-82, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19773350

RESUMO

Recruitment of the Na,K-ATPase to the plasma membrane of alveolar epithelial cells results in increased active Na(+) transport and fluid clearance in a process that requires an intact microtubule network. However, the microtubule motors involved in this process have not been identified. In the present report, we studied the role of kinesin-1, a plus-end microtubule molecular motor that has been implicated in the movement of organelles in the Na,K-ATPase traffic. We determined by confocal microscopy and biochemical assays that kinesin-1 and the Na,K-ATPase are present in the same membranous cellular compartment. Knockdown of kinesin-1 heavy chain (KHC) or the light chain-2 (KLC2), but not of the light chain-1 (KLC1), decreased the movement of Na,K-ATPase-containing vesicles when compared to sham siRNA-transfected cells (control group). Thus, a specific isoform of kinesin-1 is required for microtubule-dependent recruitment of Na,K-ATPase to the plasma membrane, which is of physiological significance.


Assuntos
Células Epiteliais Alveolares/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Transporte Proteico/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Vesículas Transportadoras/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 297(6): L1120-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801454

RESUMO

Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of alpha-SMA and vimentin was prevented in mitochondria-deficient rho(0) cells, which are incapable of ROS production during hypoxia. CoCl(2) and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-alpha under normoxia, failed to induce alpha-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1alpha did not induce alpha-SMA. However, loss of HIF-1alpha or HIF-2alpha abolished induction of alpha-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-beta1, and preincubation of AEC with SB431542, an inhibitor of the TGF-beta1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-beta1 dependent. Furthermore, both ROS and HIF-alpha were necessary for hypoxia-induced TGF-beta1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-beta1 signaling.


Assuntos
Células Epiteliais/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/patologia , Mesoderma/patologia , Mitocôndrias/metabolismo , Alvéolos Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Hipóxia/metabolismo , Mesoderma/metabolismo , Camundongos , Alvéolos Pulmonares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética
12.
J Cell Sci ; 122(Pt 21): 3915-22, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19808891

RESUMO

Stimulation of Na(+)/K(+)-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na(+)/K(+)-ATPase recruitment to the plasma membrane by increasing the average speed of Na(+)/K(+)-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na(+)/K(+)-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na(+)/K(+)-ATPase-containing vesicles, as well as the Na(+)/K(+)-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na(+)/K(+)-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na(+)/K(+)-ATPase to the plasma membrane and thus increased activity.


Assuntos
Vesículas Citoplasmáticas/enzimologia , Células Epiteliais/enzimologia , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Alvéolos Pulmonares/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/genética , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Vesículas Citoplasmáticas/genética , Vesículas Citoplasmáticas/metabolismo , Células Epiteliais/metabolismo , Humanos , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Ratos , ATPase Trocadora de Sódio-Potássio/genética
13.
J Cell Sci ; 122(Pt 9): 1390-400, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19366731

RESUMO

Much effort has been expended on analyzing how microfilament and microtubule cytoskeletons dictate the interaction of cells with matrix at adhesive sites called focal adhesions (FAs). However, vimentin intermediate filaments (IFs) also associate with the cell surface at FAs in endothelial cells. Here, we show that IF recruitment to FAs in endothelial cells requires beta3 integrin, plectin and the microtubule cytoskeleton, and is dependent on microtubule motors. In CHO cells, which lack beta3 integrin but contain vimentin, IFs appear to be collapsed around the nucleus, whereas in CHO cells expressing beta3 integrin (CHOwtbeta3), vimentin IFs extend to FAs at the cell periphery. This recruitment is regulated by tyrosine residues in the beta3 integrin cytoplasmic tail. Moreover, CHOwtbeta3 cells exhibit significantly greater adhesive strength than CHO or CHO cells expressing mutated beta3 integrin proteins. These differences require an intact vimentin network. Therefore, vimentin IF recruitment to the cell surface is tightly regulated and modulates the strength of adhesion of cells to their substrate.


Assuntos
Membrana Celular/metabolismo , Adesões Focais/metabolismo , Integrina beta3/metabolismo , Plectina/metabolismo , Vimentina/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Cricetinae , Cricetulus , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta3/genética , Filamentos Intermediários/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Paxilina/genética , Paxilina/metabolismo , Plectina/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vimentina/genética
14.
Am J Respir Crit Care Med ; 179(2): 113-22, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18948426

RESUMO

RATIONALE: Endothelin-1 (ET-1) is increased in patients with high-altitude pulmonary edema and acute respiratory distress syndrome, and these patients have decreased alveolar fluid reabsorption (AFR). OBJECTIVES: To determine whether ET-1 impairs AFR via activation of endothelial cells and nitric oxide (NO) generation. METHODS: Isolated perfused rat lung, transgenic rats deficient in ETB receptors, coincubation of lung human microvascular endothelial cells (HMVEC-L) with rat alveolar epithelial type II cells or A549 cells, ouabain-sensitive 86Rb+ uptake. MEASUREMENTS AND MAIN RESULTS: The ET-1-induced decrease in AFR was prevented by blocking the endothelin receptor ETB, but not ETA. Endothelial-epithelial cell interaction is required, as direct exposure of alveolar epithelial cells (AECs) to ET-1 did not affect Na,K-ATPase function or protein abundance at the plasma membrane, whereas coincubation of HMVEC-L and AECs with ET-1 decreased Na,K-ATPase activity and protein abundance at the plasma membrane. Exposing transgenic rats deficient in ETB receptors in the pulmonary vasculature (ET-B(-/-)) to ET-1 did not decrease AFR or Na,K-ATPase protein abundance at the plasma membrane of AECs. Exposing HMVEC-L to ET-1 led to increased NO, and the ET-1-induced down-regulation of Na,K-ATPase was prevented by the NO synthase inhibitor l-NAME, but not by a guanylate cyclase inhibitor. CONCLUSIONS: We provide the first evidence that ET-1, via an endothelial-epithelial interaction, leads to decreased AFR by a mechanism involving activation of endothelial ETB receptors and NO generation leading to alveolar epithelial Na,K-ATPase down-regulation in a cGMP-independent manner.


Assuntos
Endotelina-1/farmacologia , Endotélio Vascular/metabolismo , Água Extravascular Pulmonar/metabolismo , Óxido Nítrico/biossíntese , Alvéolos Pulmonares/metabolismo , Receptor de Endotelina B/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Lesão Pulmonar/metabolismo , Masculino , Ratos , Ratos Transgênicos , Receptor de Endotelina A/metabolismo , Síndrome do Desconforto Respiratório/metabolismo
15.
Invest Clin ; 49(2): 181-93, 2008 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-18717265

RESUMO

Hypocapnia/alkalosis is a consequence of several lung and metabolic pathologies. The aim of this study was to determine whether the increase of fluid filtration rate (FFR) that occurs during Hypocapnia/alkalosis circumstances is determined by hypocapnia, alkalosis or both. 7 groups were formed (N=36) using isolated rabbit lungs. Group 1: Control (PCO2 6%, pH: 7.35-7.45); Group 2 (n=6): Hypocapnia/Alkalosis (CO2 1%, pH: 7.9); Group 3 (n=6): Hypocapnia/Normo-pH (CO2 1% pH 7.35-7.45), Group 4 (n=6) Normocapnia/Alcalosis (CO2 6%, pH: 7.9). Fenoterol, papaverine and hydrocortisone were added to Groups 5, 6 and 7 (n=4) respectively, all under Normocapnia/Alkalosis. FFR and Pulmonary Arterial Pressure (Pap) were considerably higher in group 2 than in control (FFR: 1.92g/min +/- 0.6 vs 0.0 g/min +/- 0.006). A strong influence exerted by pH was observed when Group 3 and group 4 were compared (FFR: 0.02 g/min +/- 0.009 vs 2.3 g/min +/- 0.9) and (Pap: 13.5 cmH2O +/- 1.4 vs 90 cmH2O +/- 15). A reduced effect was observed in groups 5 and 6 (papaverine and hydrocorisone) and a totally abolished effect was observed in group 7 (fenoterol) (FFR: 0.001 +/- 0.0003 mL/min and Pap: 14 +/- 0.8 cmH2O). Pulmonary edema induced by Hypocapnia/alkalosis is a consequence of alkalosis and not of hypocapnia. This effect could be due to inflammatory damage in the lung parenchyma and alkalosis-mediated vasoconstriction.


Assuntos
Alcalose/fisiopatologia , Deslocamentos de Líquidos Corporais/fisiologia , Hipocapnia/fisiopatologia , Pulmão/fisiopatologia , Edema Pulmonar/fisiopatologia , Agonistas Adrenérgicos beta/farmacologia , Alcalose/complicações , Animais , Anti-Inflamatórios/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Fenoterol/farmacologia , Deslocamentos de Líquidos Corporais/efeitos dos fármacos , Hidrocortisona/farmacologia , Concentração de Íons de Hidrogênio , Hipocapnia/complicações , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Papaverina/farmacologia , Perfusão , Artéria Pulmonar , Edema Pulmonar/etiologia , Coelhos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatadores/farmacologia
16.
Invest. clín ; 49(2): 181-193, jun. 2008. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-518687

RESUMO

La hipocapnia/alcalosis es una situación que se presenta como consecuencia de diversas patologías pulmonares o metabólicas. El objetivo de este estudio fue determinar si el aumento de la tasa de filtración de liquido (TFL) que ocurre bajo estas circunstancias, está determinado por la hipocapnia, la alcalosis o la suma de ambas. Se realizaron 7 grupos (n=36), utilizando pulmones aislados de conejos. Grupo 1: Control (PCO2 6 por ciento, pH: 7,35-7,45); Grupo 2 (n=6): Hipocapnia/Alcalosis (CO2 1 por ciento, pH: 7,9); Grupo 3 (n=6): Hipocapnia/Normo-pH (CO2 1 por ciento pH 7,35-7,45), Grupo 4 (n=6) Normocapnia/Alcalosis (CO2 6 por ciento, pH: 7,9). En los grupos 5, 6 y 7 (n=4), todos bajo condición de Normocapnia/Alcalosis se añadió fenoterol, papaverina, e hidrocortisona respectivamente. La TFL y la presión de arteria pulmonar (Pap) fueron considerablemente mayores en el grupo 2 que en el control (TFL:1,92g/min ± 0,6 vs 0,0g/min ± 0,006), observándose una marcada influencia del pH, al comparar el grupo 3 y el grupo 4 (TFL: 0,02g/min ± 0,009 vs 2,3g/min ± 0,9) y (Pap: 13,5 cmH2O ± 1,4 vs 90 cmH2O ± 15). Se observó una disminución del efecto en los grupos 5 y 6 (papaverina e hidrocortisona) y su abolición total con fenoterol (grupo 7) (TFL: 0,001 ± 0,0003 g/min y Pap: 14 ± 0,8 cmH2O). El edema pulmonar inducido por Hipocapnia/Alcalosis es consecuencia principalmente de la alcalosis y no de la hipocapnia. Dicho efecto podría ser debido a un daño inflamatorio a nivel del parénquima y a la vasoconstricción causada por la alcalosis.


Assuntos
Animais , Coelhos , Alcalose , Edema Pulmonar/patologia , Fenoterol , Hidrocortisona , Hipocapnia , Papaverina
17.
J Clin Invest ; 118(2): 752-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18188452

RESUMO

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


Assuntos
Dióxido de Carbono/metabolismo , Endocitose , Hipercapnia/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Quinases Ativadas por AMP , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quelantes/farmacologia , AMP Cíclico/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Líquido Extracelular/metabolismo , Humanos , Isoproterenol/farmacologia , Proteína Quinase C/metabolismo , Alvéolos Pulmonares/enzimologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/enzimologia
18.
PLoS One ; 2(11): e1238, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18043745

RESUMO

BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.


Assuntos
Monóxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Alvéolos Pulmonares/fisiologia , Animais , Líquidos Corporais , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Masculino , Fosforilação , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/enzimologia , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
J Bioenerg Biomembr ; 39(5-6): 391-5, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17972021

RESUMO

A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na(+) channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation-Ubiquitination-Recognition-Endocytosis-Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKC zeta which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the alpha1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the alpha1-subunit recognition by the mu2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.


Assuntos
Regulação para Baixo , Síndrome do Desconforto Respiratório/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Endocitose , Humanos , Fosforilação , Síndrome do Desconforto Respiratório/metabolismo , Mucosa Respiratória/enzimologia , Mucosa Respiratória/patologia , Ubiquitinação
20.
Respirology ; 12(6): 799-806, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17986106

RESUMO

BACKGROUND AND OBJECTIVE: Mechanical obstruction has been considered the prime determinant of haemodynamic changes after pulmonary embolism (PE); however, the function of vasoconstrictive and inflammatory mediators in the physiopathology of this disease is unclear. The aim of this investigation was to study the effect of an anti-inflammatory and a vasodilator in a setting of induced PE. METHODS: A prospective, laboratory study was undertaken using 30 New Zealand white rabbits. A model of isolated and perfused rabbit lungs was used; PE was induced using autologous blood clots. Six study groups were established (each n = 5): PE without any drug (PG); PE + papaverine (PpG); PE + hydrocortisone (HG); PE in West's Zone III (ZIIIG); PE using acellular perfusate (AG) and PE using acellular perfusate + papaverine (APpG). The pulmonary artery pressure (PAP) and fluid filtration rate (FFR) were continuously measured during the experiments. RESULTS: Increases in PAP and oedema formation were observed in the PG after embolization. The PpG and the APpG showed neither oedema nor significant PAP increases. The HG group developed less oedema and less increase in PAP compared with the PG. The ZIIIG developed oedema the fastest. The AG developed less oedema and increases in PAP compared with the PG. CONCLUSION: These findings suggest that vasoconstriction and inflammatory mediators play an important role in the physiopathology of PE, as neither PAP increases nor oedema were observed in the PpG and a reduction of oedema and PAP was seen in the HG group. The decrease in oedema and PAP in the acellular group strongly suggests a key role of circulating blood cells.


Assuntos
Anti-Inflamatórios/farmacologia , Hidrocortisona/farmacologia , Papaverina/farmacologia , Embolia Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Vasodilatadores/farmacologia , Animais , Modelos Animais de Doenças , Hemodinâmica , Técnicas In Vitro , Estudos Prospectivos , Edema Pulmonar/fisiopatologia , Coelhos , Mecânica Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA