Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Toxicol ; 6: 1373325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665213

RESUMO

With the use of in vitro new approach methodologies (NAMs) for the assessment of non-combustible next-generation nicotine delivery products, new extrapolation methods will also be required to interpret and contextualize the physiological relevance of these results. Quantitative in vitro to in vivo extrapolation (QIVIVE) can translate in vitro concentrations into in-life exposures with physiologically-based pharmacokinetic (PBPK) modelling and provide estimates of the likelihood of harmful effects from expected exposures. A major challenge for evaluating inhalation toxicology is an accurate assessment of the delivered dose to the surface of the cells and the internalized dose. To estimate this, we ran the multiple-path particle dosimetry (MPPD) model to characterize particle deposition in the respiratory tract and developed a PBPK model for nicotine that was validated with human clinical trial data for cigarettes. Finally, we estimated a Human Equivalent Concentration (HEC) and predicted plasma concentrations based on the minimum effective concentration (MEC) derived after acute exposure of BEAS-2B cells to cigarette smoke (1R6F), or heated tobacco product (HTP) aerosol at the air liquid interface (ALI). The MPPD-PBPK model predicted the in vivo data from clinical studies within a factor of two, indicating good agreement as noted by WHO International Programme on Chemical Safety (2010) guidance. We then used QIVIVE to derive the exposure concentration (HEC) that matched the estimated in vitro deposition point of departure (POD) (MEC cigarette = 0.38 puffs or 11.6 µg nicotine, HTP = 22.9 puffs or 125.6 µg nicotine) and subsequently derived the equivalent human plasma concentrations. Results indicate that for the 1R6F cigarette, inhaling 1/6th of a stick would be required to induce the same effects observed in vitro, in vivo. Whereas, for HTP it would be necessary to consume 3 sticks simultaneously to induce in vivo the effects observed in vitro. This data further demonstrates the reduced physiological potency potential of HTP aerosol compared to cigarette smoke. The QIVIVE approach demonstrates great promise in assisting human health risk assessments, however, further optimization and standardization are required for the substantiation of a meaningful contribution to tobacco harm reduction by alternative nicotine delivery products.

2.
Front Toxicol ; 5: 1076752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875887

RESUMO

Tobacco harm reduction (THR) involves providing adult smokers with potentially reduced harm modes of nicotine delivery as alternatives to smoking combustible cigarettes. Heated tobacco products (HTPs) form a category with THR potential due to their ability to deliver nicotine and flavours through heating, not burning, tobacco. By eliminating burning, heated tobacco does not produce smoke but an aerosol which contains fewer and lower levels of harmful chemicals compared to cigarette smoke. In this study we assessed the in vitro toxicological profiles of two prototype HTPs' aerosols compared to the 1R6F reference cigarette using the 3D human (bronchial) MucilAir™ model. To increase consumer relevance, whole aerosol/smoke exposures were delivered repeatedly across a 28 day period (16, 32, or 48 puffs per exposure). Cytotoxicity (LDH secretion), histology (Alcian Blue/H&E; Muc5AC; FoxJ1 staining), cilia active area and beat frequency and inflammatory marker (IL-6; IL-8; MMP-1; MMP-3; MMP-9; TNFα) levels were assessed. Diluted 1R6F smoke consistently induced greater and earlier effects compared to the prototype HTP aerosols across the endpoints, and in a puff dependent manner. Although some significant changes across the endpoints were induced by exposure to the HTPs, these were substantially less pronounced and less frequently observed, with apparent adaptive responses occurring over the experimental period. Furthermore, these differences between the two product categories were observed at a greater dilution (and generally lower nicotine delivery range) for 1R6F (1R6F smoke diluted 1/14, HTP aerosols diluted 1/2, with air). Overall, the findings demonstrate the THR potential of the prototype HTPs through demonstrated substantial reductions in toxicological outcomes in in vitro 3D human lung models.

3.
J Appl Toxicol ; 43(7): 1050-1063, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36734622

RESUMO

In vitro testing is important to characterise biological effects of consumer products, including nicotine delivery products such as cigarettes, e-cigarettes and heated tobacco products. Users' cells are exposed to these products' aerosols, of variant chemical compositions, as they move along the respiratory tract. In vitro exposure systems are available to model such exposures, including delivery of whole aerosols to cells, and at the air-liquid interface. Whilst there are clear advantages of such systems, factors including time to aerosol delivery, aerosol losses and number of cell cultures that can be exposed at one time could be improved. This study aimed to characterise a custom-built smoke/ aerosol exposure in vitro system (SAEIVS) using 1R6F reference cigarette smoke. This system contains five parallel smoking chambers and delivers different dilutions of smoke/ aerosol to two separate cell culture exposure chambers in <10 s. Using two dosimetry measures (optical density 400 nm [OD400 ]; mass spectrometric nicotine quantification), the SAEIVS demonstrated excellent linearity of smoke dilution prior to exposure (R2  = 0.9951 for mass spectrometric quantification; R2  = 0.9965 for OD400 ) and consistent puff-wise exposures across 24 and 96 well plates in cell culture relevant formats (e.g., within inserts). Smoke loss was lower than previously reported for other systems (OD400 : 16%; nicotine measurement: 20%). There was good correlation of OD400 and nicotine measurements, indicating that OD was a useful surrogate for exposure dosimetry for the product tested. The findings demonstrated that the SAEIVS is a fit-for-purpose exposure system for the reproducible dose-wise exposure assessment of nicotine delivery product aerosols.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Nicotina/toxicidade , Nicotina/análise , Produtos do Tabaco/toxicidade , Nicotiana/toxicidade , Aerossóis
4.
Curr Res Toxicol ; 2: 309-321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485931

RESUMO

A growing number of public health bodies, regulators and governments around the world consider electronic vapor products a lower risk alternative to conventional cigarettes. Of critical importance are rapid new approach methodologies to enable the screening of next generation products (NGPs) also known as next generation tobacco and nicotine products. In this study, the activity of conventional cigarette (3R4F) smoke and a range of NGP aerosols (heated tobacco product, hybrid product and electronic vapor product) captured in phosphate buffered saline, were screened by exposing a panel of human cell-based model systems using Biologically Multiplexed Activity Profiling (BioMAP® Diversity PLUS® Panel, Eurofins Discovery). Following exposure, the biological activity for a wide range of biomarkers in the BioMAP panel were compared to determine the presence of toxicity signatures that are associated with specific clinical findings. NGP aerosols were found to be weakly active in the BioMAP Diversity PLUS Panel (≤3/148 biomarkers) whereas significant activity was observed for 3R4F (22/148 biomarkers). Toxicity associated biomarker signatures for 3R4F included immunosuppression, skin irritation and thrombosis, with no toxicity signatures seen for the NGPs. BioMAP profiling could effectively be used to differentiate between complex mixtures of cigarette smoke or NGP aerosol extracts in a panel of human primary cell-based assays. Clinical validation of these results will be critical for confirming the utility of BioMAP for screening NGPs for potential adverse human effects.

5.
Curr Res Toxicol ; 2: 99-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345855

RESUMO

Smoking is a cause of serious diseases in smokers including chronic respiratory diseases. This study aimed to evaluate the tobacco harm reduction (THR) potential of an electronic vapor product (EVP, myblu™) compared to a Kentucky Reference Cigarette (3R4F), and assessed endpoints related to chronic respiratory diseases. Endpoints included: cytotoxicity, barrier integrity (TEER), cilia function, immunohistochemistry, and pro-inflammatory markers. In order to more closely represent the user exposure scenario, we have employed the in vitro 3D organotypic model of human airway epithelium (MucilAir™, Epithelix) for respiratory assessment. The model was repeatedly exposed to either whole aerosol of the EVP, or whole 3R4F smoke, at the air liquid interface (ALI), for 4 weeks to either 30, 60 or 90 puffs on 3-exposure-per-week basis. 3R4F smoke generation used the ISO 20778:2018 regime and EVP aerosol used the ISO 20768:2018 vaping regime. Exposure to undiluted whole EVP aerosol did not trigger any significant changes in the level of pro-inflammatory mediators, cilia beating function, barrier integrity and cytotoxicity when compared with air controls. In contrast, exposure to diluted (1:17) whole cigarette smoke caused significant changes to all the endpoints mentioned above. To our knowledge, this is the first study evaluating the effects of repeated whole cigarette smoke and whole EVP aerosol exposure to a 3D lung model at the ALI. Our results add to the growing body of scientific literature supporting the THR potential of EVPs relative to combustible cigarettes and the applicability of the 3D lung models in human-relevant product risk assessments.

6.
Mutagenesis ; 36(2): 129-142, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33769537

RESUMO

In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.


Assuntos
Aneugênicos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/toxicidade , Testes de Mutagenicidade/métodos , Nicotiana/toxicidade , Nicotina/toxicidade , Propilenoglicol/toxicidade , Aerossóis/efeitos adversos , Aerossóis/análise , Animais , Fumar Cigarros/efeitos adversos , Dano ao DNA , Glicerol/análise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas , Mutagênicos/toxicidade , Nicotina/análise , Estresse Oxidativo , Propilenoglicol/análise , Medição de Risco , Fumaça/efeitos adversos , Fumar/efeitos adversos
7.
Curr Res Toxicol ; 1: 161-173, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345845

RESUMO

devTOX quickPredict (devTOX qP ) is a metabolomics biomarker-based assay that utilises human induced pluripotent stem (iPS) cells to screen for potential early stage embryonic developmental toxicity in vitro. Developmental toxicity potential is assessed based on the assay endpoint of the alteration in the ratio of key unrelated biomarkers, ornithine and cystine (o/c). This work aimed to compare the developmental toxicity potential of tobacco-containing and tobacco-free non-combustible nicotine products to cigarette smoke. Smoke and aerosol from test articles were produced using a Vitrocell VC10 smoke/aerosol exposure system and bubbled into phosphate buffered saline (bPBS). iPS cells were exposed to concentrations of up to 10% bPBS. Assay sensitivity was assessed through a spiking study with a known developmental toxicant, all-trans-retinoic acid (ATRA), in combination with cigarette smoke extract. The bPBS extracts of reference cigarettes (1R6F and 3R4F) and a heated tobacco product (HTP) were predicted to have the potential to induce developmental toxicity, in this screening assay. The bPBS concentration at which these extracts exceeded the developmental toxicity threshold was 0.6% (1R6F), 1.3% (3R4F), and 4.3% (HTP) added to the cell media. Effects from cigarette smoke and HTP aerosol were driven largely by cytotoxicity, with the cell viability and o/c ratio dose-response curves crossing the developmental toxicity thresholds at very similar concentrations of added bPBS. The hybrid product and all the electronic cigarette (e-cigarette) aerosols were not predicted to be potential early developmental toxicants, under the conditions of this screening assay.

8.
Toxicol In Vitro ; 58: 86-96, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30880017

RESUMO

There is scientific agreement that the detrimental effects of cigarettes are produced by the formation of Harmful and Potentially Harmful Constituents from tobacco combustion and not by nicotine. For this reason numerous public health bodies and governments worldwide have indicated that e-cigarettes have a central role to play in tobacco harm reduction. In this study, high content screening (HCS) was used to compare the effects of neat e-liquids and 3R4F reference cigarette smoke condensate (CSC), which served as a positive control, in Normal Human Bronchial Epithelial (NHBE) cells. The endpoints measured covered cellular health, energy production and oxidative stress. Base liquids, with or without nicotine, and commercial, flavoured, nicotine-containing e-liquids (CFs), had little or no effect on cell viability and most HCS endpoints even at significantly higher concentrations (typically 100 times or higher) than 3R4F CSC. CSC induced a dose-dependent decrease of cell viability and triggered the response in all HCS endpoints. Effects of CFs were typically observed at or above 1%. CF Menthol was the most active flavour, with minimum effective concentrations 43 to 659 times higher than corresponding 3R4F CSC concentrations. Our results show a lower biological activity of e-liquids compared to cigarette smoke condensate in this experimental setting, across wide range of cellular endpoints.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Glicerol/toxicidade , Nicotina/toxicidade , Propilenoglicol/toxicidade , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Trifosfato de Adenosina/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Differentiation ; 76(1): 91-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17697124

RESUMO

Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Delta mlp2 Delta double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture (Laroche et al., 1998) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.


Assuntos
Pareamento Cromossômico/fisiologia , Proteínas de Ligação a DNA/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Sondas de DNA , Proteínas de Ligação a DNA/metabolismo , Diploide , Deleção de Genes , Haploidia , Hibridização in Situ Fluorescente , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo
10.
J Cell Sci ; 118(Pt 21): 4985-94, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16254243

RESUMO

The entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set1 histone methyltransferase leads to a delay of premeiotic S phase by separate mechanisms. In clb5Delta cells, centromere cluster resolution appears normal, whereas dissolution of the vegetative telomere clusters is impaired and meiosis-specific clustering of telomeres, i.e. bouquet formation, is grossly delayed. In set1Delta cells, centromere and telomere redistribution are both impaired and bouquet nuclei are absent, despite proper location of the meiosis-specific telomere protein Ndj1. Thus, centromere and telomere redistribution at the onset of prophase I is differentially regulated, with centromere dispersion occurring independently of premeiotic S phase. The normal kinetics of dissolution of the vegetative telomere clusters in a set1Delta mec1-1 mutant suggests the presence of a checkpoint that limits the dispersion of telomeres in absence of Set1.


Assuntos
Centrômero/metabolismo , Ciclina B/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Pareamento Cromossômico/genética , Ciclina B/deficiência , Proteínas de Ligação a DNA/deficiência , Epistasia Genética , Inativação Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Peptídeos e Proteínas de Sinalização Intracelular , Meiose/genética , Proteínas Metiltransferases , Proteínas Serina-Treonina Quinases , Fase S/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
11.
J Cell Biol ; 170(2): 213-23, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16027219

RESUMO

In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.


Assuntos
Actinas/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Meiose , Proteínas Nucleares/fisiologia , Saccharomyces cerevisiae/fisiologia , Telômero/fisiologia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/fisiologia , Proteínas de Fluorescência Verde/genética , Microtúbulos/fisiologia , Mutação , Membrana Nuclear/fisiologia , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Fuso Acromático , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Coesinas
12.
J Cell Sci ; 116(Pt 12): 2431-42, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12734403

RESUMO

We investigated the sequence of chromosomal events during meiotic prophase in haploid, diploid and autotetraploid SK1 strains of Saccharomyces cerevisiae. Using molecular cytology, we found that meiosis-specific nuclear topology (i.e. dissolution of centromere clustering, bouquet formation and meiotic divisions) are significantly delayed in polyploid SK1 meiosis. Thus, and in contrast to the situation in plants, an increase in ploidy extends prophase I in budding yeast. Moreover, we found that bouquet formation also occurs in haploid and diploid SK1 meiosis deficient in the telomeric heterochromatin protein Sir3p. Diploid sir3Delta SK1 meiosis showed pleiotropic defects such as delayed centromere cluster resolution in a proportion of cells and impeded downstream events (i.e. bouquet formation, homologue pairing and meiotic divisions). Meiotic telomere clustering occurred in diploid and haploid sir3Delta strains. Using the haploid system, we further show that a bouquet forms at the kar3Delta SPB. Comparison of the expression of meiosis-specific Ndj1p-HA and Zip1p in haploid control and kar3Delta time courses revealed that fewer cells enter the meiotic cycle in absence of Kar3p. Elevated frequencies of bouquets in kar3Delta haploid meiosis suggest a role for Kar3p in regulation of telomere dynamics.


Assuntos
Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Ploidias , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/genética , Proteínas de Ciclo Celular/genética , Centrômero/genética , Pareamento Cromossômico/genética , Diploide , Células Germinativas/metabolismo , Haploidia , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Nucleares , Prófase/genética , Saccharomyces cerevisiae/metabolismo
13.
J Cell Sci ; 115(Pt 19): 3829-35, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12235293

RESUMO

We demonstrate that the genomes of Saccharomyces cerevisiae and S. paradoxus are sufficiently divergent to allow their differential labeling by genomic in situ hybridisation (GISH). The cytological discrimination of the genomes allowed us to study the merging of the two genomes during hybrid mating. GISH revealed that in hybrid nuclei the two genomes are intermixed. In hybrid meiosis, extensive intraspectific nonhomologous pairing takes place. GISH on chromosome addition and substitution strains (with chromosomes of S. paradoxus added to or replacing the homoeologous chromosome of an otherwise S. cerevisiae background) was used to delineate individual chromosomes at interphase and to examine various aspects of chromosome structure and arrangement.


Assuntos
Núcleo Celular/genética , Quimera/genética , Segregação de Cromossomos/genética , Cromossomos/genética , Genoma Fúngico , Meiose/genética , Saccharomyces cerevisiae/genética , Células Cultivadas , Pareamento Cromossômico/genética , Cromossomos/ultraestrutura , Regulação Fúngica da Expressão Gênica/genética , Interfase/genética , Hibridização de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico , Zigoto/citologia
14.
Mol Cell ; 9(4): 835-46, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11983174

RESUMO

We have studied the repair of a DNA-DSB created by the VMA1-derived endonuclease in mutants that have different levels of Spo11-DSBs: WT (sae2), few (hop1), and none (spo11-Y135F). In spo11-Y135F and hop1 cells, intrachromosomal repair is more frequent than in WT and sae2 cells. In spo11-Y135F cells there was no chromosome pairing or synapsis and a faster turnover of resected DNA. Compared to WT and sae2 cells, spo11-Y135F and hop1 cells have a greater proportion of long resection tracts. The data suggest that high levels of Spo11-DSBs are required for normal regulation of resection, even at a DSB created by another protein. WT control over resection could be important for directing repair to be interchromosomal, increasing the chance of creating interhomolog connections essential to meiotic segregation.


Assuntos
Quebra Cromossômica , Cromossomos Fúngicos/genética , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/fisiologia , Esterases/fisiologia , Meiose/genética , ATPases Translocadoras de Prótons , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/ultraestrutura , Reparo do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Esterases/deficiência , Esterases/genética , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Complexo Sinaptonêmico/fisiologia
15.
Nat Cell Biol ; 4(3): 214-21, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11862215

RESUMO

Recent experiments have shown that gene repression can be correlated with relocation of genes to heterochromatin-rich silent domains. Here, we investigate whether nuclear architecture and spatial positioning can contribute directly to the transcriptional activity of a genetic locus in Saccharomyces cerevisiae. By disassembling telomeric silent domains without altering the chromatin-mediated silencing machinery, we show that the transcriptional activity of silencer--reporter constructs depends on intranuclear position. This demonstrates that telomeric silent domains are actively involved in transcriptional silencing. Employing fluorescent in situ hybridization (FISH) in combination with genetic assays, we demonstrate that telomeres control the establishment of transcriptional states by reversible partitioning with the perinuclear silencing domains. Anchoring telomeres interferes with their ability to assume an active state, whereas disassembly of silencing domains prevents telomeres from assuming a repressed state. Our data support a model in which domains of enriched transcriptional regulators allow genes to determine transcriptional states by spatial positioning.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inativação Gênica , Genes Fúngicos , Genes Reporter , Hibridização in Situ Fluorescente , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transcrição Gênica , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA