Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Microbiol ; 13: 901192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160185

RESUMO

Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.

2.
Front Microbiol ; 11: 530906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329413

RESUMO

Campylobacter is the leading cause of the human bacterial foodborne infections in the developed countries. The perception cues from biotic or abiotic environments by the bacteria are often related to bacterial surface and membrane proteins that mediate the cellular response for the adaptation of Campylobacter jejuni to the environment. These proteins function rarely as a unique entity, they are often organized in functional complexes. In C. jejuni, these complexes are not fully identified and some of them remain unknown. To identify putative functional multi-subunit entities at the membrane subproteome level of C. jejuni, a holistic non a priori method was addressed using two-dimensional blue native/Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in strain C. jejuni 81-176. Couples of acrylamide gradient/migration-time, membrane detergent concentration and hand-made strips were optimized to obtain reproducible extraction and separation of intact membrane protein complexes (MPCs). The MPCs were subsequently denatured using SDS-PAGE and each spot from each MPCs was identified by mass spectrometry. Altogether, 21 MPCs could be detected including multi homo-oligomeric and multi hetero-oligomeric complexes distributed in both inner and outer membranes. The function, the conservation and the regulation of the MPCs across C. jejuni strains were inspected by functional and genomic comparison analyses. In this study, relatedness between subunits of two efflux pumps, CmeABC and MacABputC was observed. In addition, a consensus sequence CosR-binding box in promoter regions of MacABputC was present in C. jejuni but not in Campylobacter coli. The MPCs identified in C. jejuni 81-176 membrane are involved in protein folding, molecule trafficking, oxidative phosphorylation, membrane structuration, peptidoglycan biosynthesis, motility and chemotaxis, stress signaling, efflux pumps and virulence.

3.
Front Cell Infect Microbiol ; 10: 608020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489938

RESUMO

Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasizing the need to investigate their survival strategy in greater depth.


Assuntos
Campylobacter jejuni , Campylobacter jejuni/genética , Genoma Bacteriano , Luxemburgo/epidemiologia , Tipagem de Sequências Multilocus , Projetos Piloto , Sequenciamento Completo do Genoma
4.
J Microbiol Methods ; 149: 67-72, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729311

RESUMO

Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 108 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Aderência Bacteriana/fisiologia , Campylobacter jejuni/patogenicidade , Técnicas de Cultura de Células/métodos , Células HT29 , Humanos , Inflamação , Interleucina-8/metabolismo , Virulência
6.
Microorganisms ; 5(3)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841156

RESUMO

With the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established.

7.
Front Microbiol ; 8: 913, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572800

RESUMO

Campylobacter jejuni has been reported as a major cause of bacterial food-borne enteritides in developed countries during the last decade. Despite its fastidious growth requirements, including low level of oxygen and high level of CO2, this pathogen is able to persist in the environment without permanent loss of its viability and virulence. As C. jejuni is not able to multiply outside a host, the cells spend significant amount of time in stationary phase of growth. The entry into the stationary phase is often correlated to resistance to various stresses in bacteria. The switching between exponential and stationary phases is frequently mediated by the regulator sigma S (RpoS). However, this factor is absent in C. jejuni and molecular mechanisms responsible for transition of cells to the stationary phase remain elusive. In this work, proteomic profiles of cells from exponential and stationary phases were compared using 2-D electrophoresis (2DE) fingerprinting combined with mass spectrometry analysis and qRT-PCR. The identified proteins, whose expression differed between the two phases, are mostly involved in protein biosynthesis, carbon metabolism, stress response and motility. Altered expression was observed also in the pleiotropic regulator CosR that was over-expressed during stationary phase. A shift between transcript and protein level evolution of CosR throughout the growth of C. jejuni was observed using qRT-PCR and (2DE). From these data, we hypothesized that CosR could undergo a negative autoregulation in stationary phase. A consensus sequence resulting from promoter sequence alignment of genes potentially regulated by CosR, including its own upstream region, among C. jejuni strains is proposed. To verify experimentally the potential autoregulation of CosR at the DNA level, electrophoretic mobility shift assay was performed with DNA fragments of CosR promoter region and rCosR. Different migration pattern of the promoter fragments indicates the binding capacity of CosR, suggesting its auto-regulation potential.

9.
Crit Rev Microbiol ; 43(3): 313-351, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27868469

RESUMO

Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.


Assuntos
Biofilmes , Processamento de Imagem Assistida por Computador/métodos , Técnicas Microbiológicas/instrumentação , Microscopia/métodos , Biologia Molecular/métodos , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Bases de Dados Factuais , Desenho de Equipamento , Hibridização in Situ Fluorescente , Dispositivos Lab-On-A-Chip , Técnicas Microbiológicas/métodos , Software
10.
Front Microbiol ; 7: 1596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790195

RESUMO

Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.

11.
Artigo em Inglês | MEDLINE | ID: mdl-27617232

RESUMO

The pathogenesis of listeriosis results mainly from the ability of Listeria monocytogenes to attach, invade, replicate and survive within various cell types in mammalian tissues. In this work, the effect of two bacteriocin-producing Carnobacterium (C. divergens V41 and C. maltaromaticum V1) and three non-bacteriocinogenic strains: (C. divergens V41C9, C. divergens 2763, and C. maltaromaticum 2762) was investigated on the reduction of L. monocytogenes Scott A plaque-forming during human infection using the HT-29 in vitro model. All Carnobacteria tested resulted in a reduction in the epithelial cell invasion caused by L. monocytogenes Scott A. To understand better the mechanism underlying the level of L. monocytogenes infection inhibition by Carnobacteria, infection assays from various pretreatments of Carnobacteria were assessed. The results revealed the influence of bacteriocin production combined with a passive mechanism of mammalian cell monolayers protection by Carnobacteria. These initial results showing a reduction in L. monocytogenes virulence on epithelial cells by Carnobacteria would be worthwhile analyzing further as a promising probiotic tool for human health.


Assuntos
Antibiose , Carnobacterium/fisiologia , Endocitose , Células Epiteliais/microbiologia , Listeria monocytogenes/patogenicidade , Células HT29 , Humanos
12.
Front Microbiol ; 7: 1002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446042

RESUMO

Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under aerobic atmosphere may result from the combination of insertions and mutations. In addition, the comparison of mRNA transcript levels of several genes targeted through genome analysis suggests the modification of regulatory processes in this strain.

13.
Genome Announc ; 4(2)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056213

RESUMO

In this study, we describe the draft genome sequence of aCampylobacter jejuniclinical isolate issued from a French patient suffering from severe campylobacteriosis. This atypical strain is characterized by an unusual resistance to oxygen and the ability to grow under an aerobic atmosphere, a characteristic as-of-yet unique to this species.

14.
Biofouling ; 32(5): 597-608, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097059

RESUMO

Campylobacter jejuni is responsible for the most common bacterial foodborne gastroenteritis. Despite its fastidious growth, it can survive harsh conditions through biofilm formation. In this work, fluorescence lectin-binding analysis was used to determine the glycoconjugates present in the biofilm matrix of two well-described strains. Screening of 72 lectins revealed strain-specific patterns with six lectins interacting with the biofilm matrix of both strains. The most common sugar moiety contained galactose and N-acetylgalactosamine. Several lectins interacted with N-acetylglucosamine and sialic acid, probably originated from the capsular polysaccharides, lipooligosaccharides and N-glycans of C. jejuni. In addition, glycoconjugates containing mannose and fucose were detected within the biofilm, which have not previously been found in the C. jejuni envelope. Detection of thioflavin T and curcumin highlighted the presence of amyloids in the cell envelope without association with specific cell appendages. The lectins ECA, GS-I, HMA and LEA constitute a reliable cocktail to detect the biofilm matrix of C. jejuni.


Assuntos
Biofilmes , Campylobacter jejuni/fisiologia , Lectinas/metabolismo , Fluorescência , Glicoconjugados/análise , Lipopolissacarídeos/análise , Polissacarídeos Bacterianos/análise
15.
Int J Food Microbiol ; 221: 37-53, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26803272

RESUMO

In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.


Assuntos
Fenômenos Fisiológicos Bacterianos , Dessecação , Microbiologia de Alimentos , Indústria de Processamento de Alimentos/normas , Estresse Fisiológico/fisiologia
16.
Gut Pathog ; 7: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594244

RESUMO

BACKGROUND: Campylobacter jejuni is a leading cause of bacterial enteritis worldwide. This microaerophilic bacterium can survive in aerobic environments, suggesting it has protective mechanisms against oxidative stress. The clinical C. jejuni Bf strain is characterized by an increased resistance to oxygen. This study aimed to characterize the behavior of the clinical C. jejuni Bf strain under an aerobic atmosphere and in response to ROS-promoter agents. METHODS: Growth was studied in both aerobic and microaerobic conditions using classic cultivable methods. Electronic microscopy and mreB gene expression were used to evaluate the morphology of this strain under aerobic conditions. The survival under oxidative stress was tested in the presence of different concentrations of hydrogen peroxide (H2O2) and paraquat (PQ). RESULTS: The results showed that C. jejuni Bf strain can grow aerobically, unlike other strains of C. jejuni tested. Cells of C. jejuni Bf exposed to oxidative stress presented changes in morphology and the gene mreB, responsible for maintaining the bacillary cell morphology, was down-expressed. In aerobically acclimated conditions, C. jejuni Bf exhibited a higher survival rate of 52 % in the presence of H2O2 (1 mM) compared to the reference strain NCTC 11168. Concentrations above 1 mM PQ were lethal for the reference strain but not for C. jejuni Bf. CONCLUSIONS: Taken together, these data highlight the resistance to oxidative stress conditions of C. jejuni Bf, indicating that this microorganism seems more adapted to survival in hostile environmental conditions.

17.
Food Microbiol ; 52: 169-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26338132

RESUMO

Campylobacter is the leading cause of bacterial enteritis in the world. For this reason, this pathogen is widely studied. As a microaerophilic and capnophilic microorganism, this foodborne pathogen requires an atmosphere with reduced oxygen (O2) and elevated carbon dioxide (CO2) concentrations for its optimal growth in vitro. According to the procedure for Campylobacter spp. isolation and cultivation from food products and environmental samples, European and American standards recommend gas proportions of 5% O2 and 10% CO2, complemented with nitrogen (N2). However, in the literature, the reported proportion of O2 for microaerobic growth conditions of Campylobacter spp. can range from 2.5% to 15% and the reason for this variation is usually not explained. The use of different gas generating systems and media to detect and to grow Campylobacter from foodstuff and the lack of information about gas producing systems are the main sources of the loss of consistancy between data. In this review, the relevance, strengths and weaknesses of these methods and their impact on Campylobacter biology are discussed. In conclusion the minimum information concerning microaerobic gaseous atmospheres are suggested in order to better harmonize data obtained from research studies for a better understanding of Campylobacter features.


Assuntos
Técnicas Bacteriológicas/instrumentação , Campylobacter/crescimento & desenvolvimento , Dióxido de Carbono/análise , Nitrogênio/análise , Oxigênio/análise , Atmosfera , Técnicas Bacteriológicas/métodos , Campylobacter/química , Campylobacter/metabolismo , Dióxido de Carbono/metabolismo , Gases/análise , Gases/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo
18.
Front Microbiol ; 6: 709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217332

RESUMO

During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

19.
Int J Food Microbiol ; 164(1): 7-14, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23587707

RESUMO

Campylobacter represents the leading cause of gastroenteritis in Europe. Campylobacteriosis is mainly due to C. jejuni and C. coli. Poultry meat is the main source of contamination, and cross-contaminations in the consumer's kitchen appear to be the important route for exposure. The aim of this study was to examine the transfer of Campylobacter from naturally contaminated raw poultry products to a cooked chicken product via the cutting board and to determine the characteristics of the involved isolates. This study showed that transfer occurred in nearly 30% of the assays and that both the C. jejuni and C. coli species were able to transfer. Transfer seems to be linked to specific isolates: some were able to transfer during separate trials while others were not. No correlation was found between transfer and adhesion to inert surfaces, but more than 90% of the isolates presented moderate or high adhesion ability. All tested isolates had the ability to adhere and invade Caco-2 cells, but presented high variability between isolates. Our results highlighted the occurrence of Campylobacter cross-contamination via the cutting board in the kitchen. Moreover, they provided new interesting data to be considered in risk assessment studies.


Assuntos
Campylobacter/genética , Culinária , Contaminação de Equipamentos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Carne/microbiologia , Animais , Aderência Bacteriana , Células CACO-2 , Campylobacter/classificação , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Galinhas , Contagem de Colônia Microbiana , Genes Bacterianos/genética , Variação Genética , Genótipo , Humanos , Lipopolissacarídeos/genética , Dados de Sequência Molecular , Filogenia
20.
PLoS One ; 7(9): e46402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029510

RESUMO

Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81-176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81-176 ΔCadF cells compared to the isogenic strain.Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Oxigênio/farmacologia , Aerobiose , Anaerobiose , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Ácidos Graxos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Paraquat/farmacologia , Proteoma/genética , Proteoma/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA