Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36912772

RESUMO

Septins are filamentous GTPases that play important but poorly characterized roles in ciliogenesis. Here, we show that SEPTIN9 regulates RhoA signaling at the base of cilia by binding and activating the RhoA guanine nucleotide exchange factor, ARHGEF18. GTP-RhoA is known to activate the membrane targeting exocyst complex, and suppression of SEPTIN9 causes disruption of ciliogenesis and mislocalization of an exocyst subunit, SEC8. Using basal body-targeted proteins, we show that upregulating RhoA signaling at the cilium can rescue ciliary defects and mislocalization of SEC8 caused by global SEPTIN9 depletion. Moreover, we demonstrate that the transition zone components, RPGRIP1L and TCTN2, fail to accumulate at the transition zone in cells lacking SEPTIN9 or depleted of the exocyst complex. Thus, SEPTIN9 regulates the recruitment of transition zone proteins on Golgi-derived vesicles by activating the exocyst via RhoA to allow the formation of primary cilia.


Assuntos
Cílios , Septinas , Proteína rhoA de Ligação ao GTP , Cílios/metabolismo , Citoplasma/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Septinas/genética , Septinas/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Bioessays ; 44(3): e2100183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001404

RESUMO

Hedgehog (Hh) signaling is a widely studied signaling pathway because of its critical roles during development and in cell homeostasis. Vertebrate canonical and non-canonical Hh signaling are typically assumed to be distinct and occur in different cellular compartments. While research has primarily focused on the canonical form of Hh signaling and its dependency on primary cilia - microtubule-based signaling hubs - an extensive list of crucial functions mediated by non-canonical Hh signaling has emerged. Moreover, amounting evidence indicates that canonical and non-canonical modes of Hh signaling are interlinked, and that they can overlap spatially, and in many cases interact functionally. Here, we discuss some of the many cellular effects of non-canonical signaling and discuss new evidence indicating inter-relationships with canonical signaling. We discuss how Smoothened (Smo), a key component of the Hh pathway, might coordinate such diverse downstream effects. Collectively, pursuit of questions such as those proposed here will aid in elucidating the full extent of Smo function in development and advance its use as a target for cancer therapeutics.


Assuntos
Cílios , Proteínas Hedgehog , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
J Biol Chem ; 296: 100680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872598

RESUMO

Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.


Assuntos
Cílios/metabolismo , Forminas/metabolismo , Actinas/metabolismo , Linhagem Celular , Humanos , Microtúbulos/metabolismo
4.
Mol Biol Cell ; 32(3): 289-300, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263440

RESUMO

Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the Borg homology domain 3 (BD3) domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared with its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.


Assuntos
Septinas/metabolismo , Septinas/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , Mamíferos/metabolismo , Polimerização
5.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33258871

RESUMO

Primary cilia function as critical signaling hubs whose absence leads to severe disorders collectively known as ciliopathies; our knowledge of ciliogenesis remains limited. We show that Smo induces ciliogenesis through two distinct yet essential noncanonical Hh pathways in several cell types, including neurons. Surprisingly, ligand activation of Smo induces autophagy via an LKB1-AMPK axis to remove the satellite pool of OFD1. This is required, but not sufficient, for ciliogenesis. Additionally, Smo activates the Gαi-LGN-NuMA-dynein axis, causing accumulation of a portion of OFD1 at centrioles in early ciliogenesis. Both pathways are critical for redistribution of BBS4 from satellites to centrioles, which is also mediated by OFD1 centriolar translocation. Notably, different Smo agonists, which activate Smo distinctly, activate one or the other of these pathways; only in combination they recapitulate the activity of Hh ligand. These studies provide new insight into physiological stimuli (Hh) that activate autophagy and promote ciliogenesis and introduce a novel role for the Gαi-LGN-NuMA-dynein complex in this process.


Assuntos
Autofagia , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Autofagia/efeitos dos fármacos , Corpos Basais/efeitos dos fármacos , Corpos Basais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centríolos/efeitos dos fármacos , Centríolos/metabolismo , Cílios/efeitos dos fármacos , Dineínas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organogênese/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Soro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo
6.
FASEB J ; 34(12): 16516-16535, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124112

RESUMO

Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.


Assuntos
Movimento Celular/fisiologia , Cílios/metabolismo , Cílios/fisiologia , Forminas/metabolismo , Transporte Proteico/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cultivadas , Centrossomo/metabolismo , Centrossomo/fisiologia , Ciliopatias/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia
7.
BMC Bioinformatics ; 20(1): 561, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703549

RESUMO

BACKGROUND: The MG-RAST API provides search capabilities and delivers organism and function data as well as raw or annotated sequence data via the web interface and its RESTful API. For casual users, however, RESTful APIs are hard to learn and work with. RESULTS: We created the graphical MG-RAST API explorer to help researchers more easily build and export API queries; understand the data abstractions and indices available in MG-RAST; and use the results presented in-browser for exploration, development, and debugging. CONCLUSIONS: The API explorer lowers the barrier to entry for occasional or first-time MG-RAST API users.


Assuntos
Ferramenta de Busca , Software , Interface Usuário-Computador , Archaea/genética , Sequência de Bases , Bases de Dados Genéticas , Internet
8.
Nat Cell Biol ; 21(10): 1234-1247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570833

RESUMO

Phosphoinositides have a pivotal role in the maturation of nascent phagosomes into microbicidal phagolysosomes. Following degradation of their contents, mature phagolysosomes undergo resolution, a process that remains largely uninvestigated. Here we studied the role of phosphoinositides in phagolysosome resolution. Phosphatidylinositol-4-phosphate (PtdIns(4)P), which is abundant in maturing phagolysosomes, was depleted as they tubulated and resorbed. Depletion was caused, in part, by transfer of phagolysosomal PtdIns(4)P to the endoplasmic reticulum, a process mediated by oxysterol-binding protein-related protein 1L (ORP1L), a RAB7 effector. ORP1L formed discrete tethers between the phagolysosome and the endoplasmic reticulum, resulting in distinct regions with alternating PtdIns(4)P depletion and enrichment. Tubules emerged from PtdIns(4)P-rich regions, where ADP-ribosylation factor-like protein 8B (ARL8B) and SifA- and kinesin-interacting protein/pleckstrin homology domain-containing family M member 2 (SKIP/PLEKHM2) accumulated. SKIP binds preferentially to monophosphorylated phosphoinositides, of which PtdIns(4)P is most abundant in phagolysosomes, contributing to their tubulation. Accordingly, premature hydrolysis of PtdIns(4)P impaired SKIP recruitment and phagosome resolution. Thus, resolution involves phosphoinositides and tethering of phagolysosomes to the endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Monócitos/metabolismo , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/genética , Transdução de Sinais , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Sistemas CRISPR-Cas , Retículo Endoplasmático/ultraestrutura , Edição de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , Monócitos/ultraestrutura , Fagocitose , Fagossomos/ultraestrutura , Cultura Primária de Células , Proteólise , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
Nat Commun ; 10(1): 3521, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387993

RESUMO

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


Assuntos
Antígenos CD36/metabolismo , LDL-Colesterol/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Receptores Depuradores/metabolismo , Animais , Antígenos CD36/genética , Células CHO , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cricetulus , Fibroblastos , Técnicas de Inativação de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Proteínas de Membrana Lisossomal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteína C1 de Niemann-Pick , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Receptores Depuradores/genética
10.
Dev Cell ; 50(3): 283-295.e5, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31231038

RESUMO

Scavenger receptor B1 (SR-B1), the main receptor for high-density lipoprotein (HDL), is key in preventing atherosclerosis. It removes cholesterol from HDL, returning the lipid-poor lipoprotein to the circulation. To study the mechanisms controlling SR-B1 dynamics at the plasma membrane and its internalization rate, we developed a single-chain variable fragment (ScFv) antibody to image the receptor in live cells and track the behavior of single SR-B1 molecules. Unlike transferrin receptors, cholera-toxin-binding gangliosides, and bulk membrane markers, SR-B1 was internalized only marginally over hours. Plasmalemmal retention was not attributable to its C-terminal PDZ-binding domain or to attachment to the cortical cytoskeleton. Instead, SR-B1 undergoes multimerization into large metastable clusters that, despite being mobile in the membrane, fail to enter endocytic pathways. SR-B1 multimerization was impaired by mutating its C-terminal leucine zipper and by disrupting actin polymerization, causing rapid receptor internalization. Multimerization and plasmalemmal retention are critical for SR-B1 function.


Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Receptores Depuradores Classe B/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Endocitose , Células Hep G2 , Humanos , Zíper de Leucina , Mutação , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/genética
11.
Brief Bioinform ; 20(4): 1151-1159, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29028869

RESUMO

As technologies change, MG-RAST is adapting. Newly available software is being included to improve accuracy and performance. As a computational service constantly running large volume scientific workflows, MG-RAST is the right location to perform benchmarking and implement algorithmic or platform improvements, in many cases involving trade-offs between specificity, sensitivity and run-time cost. The work in [Glass EM, Dribinsky Y, Yilmaz P, et al. ISME J 2014;8:1-3] is an example; we use existing well-studied data sets as gold standards representing different environments and different technologies to evaluate any changes to the pipeline. Currently, we use well-understood data sets in MG-RAST as platform for benchmarking. The use of artificial data sets for pipeline performance optimization has not added value, as these data sets are not presenting the same challenges as real-world data sets. In addition, the MG-RAST team welcomes suggestions for improvements of the workflow. We are currently working on versions 4.02 and 4.1, both of which contain significant input from the community and our partners that will enable double barcoding, stronger inferences supported by longer-read technologies, and will increase throughput while maintaining sensitivity by using Diamond and SortMeRNA. On the technical platform side, the MG-RAST team intends to support the Common Workflow Language as a standard to specify bioinformatics workflows, both to facilitate development and efficient high-performance implementation of the community's data analysis tasks.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Metagenômica/métodos , Software , Algoritmos , Orçamentos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Internet , Metagenômica/economia , Metagenômica/estatística & dados numéricos , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos , Interface Usuário-Computador , Fluxo de Trabalho
12.
Cytoskeleton (Hoboken) ; 76(1): 63-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176126

RESUMO

Septins are a conserved family of GTPases that associate with numerous components of the cytoskeleton and the inner leaflet of the plasma membrane. These proteins are involved in many biological processes, including cell division and membrane trafficking, and serving as a scaffolding component of the cytoskeleton used to recruit other proteins and form diffusion barriers to maintain the composition of membrane domains. In order to carry out their cellular functions, septins undergo interactions via their NC or G interfaces to form heteromeric rod-like structures that can polymerize into filaments and associate laterally into bundles. While electron microscopy studies of affinity-tagged and purified Saccharomyces cerevisiae septin complexes have provided evidence for this periodic organization and in-registry lateral bundling in vitro, the in-vivo arrangement of stress fiber-associated septin bundles in mammalian cells remains poorly characterized. We report here on a direct stochastic optical reconstruction microscopy and photoactivated localization microscopy study of the 2D spatial distribution of septins in mammalian cells. From simulated and experimental results, we show the effects of labeling method, labeling efficiency, and fluorescent emitter photophysics on image reconstruction and interpretation. Our experimental results are consistent with septin organization by polymerization of hetero-octamers and an approximate 30-35 nm periodicity between subsequent units of SEPT2-SEPT2 or SEPT9-SEPT9.


Assuntos
Septinas/metabolismo , Animais , Mamíferos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell Microbiol ; 20(10): e12866, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885024

RESUMO

Actin nucleators and their binding partners play crucial roles during Salmonella invasion, but how these factors are dynamically coordinated remains unclear. Here, we show that septins, a conserved family of GTP binding proteins, play a role during the early stages of Salmonella invasion. We demonstrate that septins are rapidly enriched at sites of bacterial entry and contribute to the morphology of invasion ruffles. We found that SEPTIN2, SEPTIN7, and SEPTIN9 are required for efficient bacterial invasion. Septins contributed to the recruitment of ROCK2 kinase during Salmonella invasion, and the downstream activation of the actin nucleating protein FHOD1. In contrast, activation of the ROCK2 substrate myosin II, which is known to be required for Salmonella enterica serovar Typhimurium invasion, did not require septins. Collectively, our studies provide new insight into the mechanisms involved in Salmonella invasion of host cells.


Assuntos
Actinas/metabolismo , Miosinas/metabolismo , Infecções por Salmonella/patologia , Salmonella typhimurium/patogenicidade , Septinas/metabolismo , Linhagem Celular Tumoral , Proteínas Fetais/metabolismo , Forminas , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Salmonella typhimurium/genética , Quinases Associadas a rho/metabolismo
14.
Elife ; 72018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595474

RESUMO

Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.


Assuntos
Tamanho Celular , Células Epiteliais/fisiologia , Fase G1 , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Humanos , Controle Social Formal
15.
BMC Biol ; 15(1): 102, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089042

RESUMO

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Assuntos
Ciclo Celular , Metabolismo dos Lipídeos , Biogênese de Organelas , Transporte Biológico , Membrana Celular/metabolismo
16.
Front Cell Dev Biol ; 5: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428954

RESUMO

Septins are a family of GTP-binding proteins that associate with cellular membranes and the cytoskeleton. Their ability to polymerize into filamentous structures permits them to serve as diffusion barriers for membrane proteins and as multi-molecular scaffolds that recruit components of signaling pathways. At the cellular level, septins contribute to the regulation of numerous processes, including cytokinesis, cell polarity, cell migration, and many others. In this review, we discuss emerging evidence for roles of mammalian septins in the biogenesis and function of flagella and cilia, and how this may impact human diseases such as ciliopathies.

17.
J Cell Biol ; 216(2): 367-377, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108526

RESUMO

Lipid exchange between the endoplasmic reticulum (ER) and peroxisomes is necessary for the synthesis and catabolism of lipids, the trafficking of cholesterol, and peroxisome biogenesis in mammalian cells. However, how lipids are exchanged between these two organelles is not understood. In this study, we report that the ER-resident VAMP-associated proteins A and B (VAPA and VAPB) interact with the peroxisomal membrane protein acyl-CoA binding domain containing 5 (ACBD5) and that this interaction is required to tether the two organelles together, thereby facilitating the lipid exchange between them. Depletion of either ACBD5 or VAP expression results in increased peroxisome mobility, suggesting that VAP-ACBD5 complex acts as the primary ER-peroxisome tether. We also demonstrate that tethering of peroxisomes to the ER is necessary for peroxisome growth, the synthesis of plasmalogen phospholipids, and the maintenance of cellular cholesterol levels. Collectively, our data highlight the importance of VAP-ACBD5-mediated contact between the ER and peroxisomes for organelle maintenance and lipid homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Homeostase , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/genética
18.
Anal Biochem ; 513: 7-20, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510553

RESUMO

The binding and activation of macrophages by microscopic aggregates of oxLDL in the intima of the arteries may be an important step towards atherosclerosis leading to heart attack and stroke. Microbeads coated with oxLDL were used to activate, capture and isolate the oxLDL receptor complex from the surface of live cells. Analysis of the resulting tryptic peptides by liquid chromatography and tandem mass spectrometry revealed the Spleen Tyrosine Kinase (SYK), and many of SYK's known interaction network including Fc receptors (FCGR2A, FCER1G and FCGR1A) Toll receptor 4 (TLR4), receptor kinases like EGFRs, as well as RNA binding and metabolism proteins. High-intensity precursor ions (∼9*E3 to 2*E5 counts) were correlated to peptides and specific phosphopeptides from long isoform of SYK (SYK-L) by the SEQUEST, OMSSA and X!TANDEM algorithms. Peptides or phosphopeptides from SYK were observed with the oxLDL-microbeads. Pharmacological inhibitors of SYK activity significantly reduced the engulfment of oxLDL microbeads in the presence of serum factors, but had little effect on IgG phagocytosis. Anti SYK siRNA regulated oxLD engulfment in the context of serum factors and or SYK-L siRNA significantly inhibited engulfment of oxLDL microbeads, but not IgG microbeads.


Assuntos
Lipoproteínas LDL/química , Fagocitose , Receptores de LDL Oxidado/química , Quinase Syk/química , Cromatografia Líquida , Humanos , Imunoglobulina G/química , Receptores Fc/química , Receptores Fc/metabolismo , Quinase Syk/antagonistas & inibidores , Quinase Syk/isolamento & purificação , Quinase Syk/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Células U937
19.
Anal Biochem ; 500: 24-34, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26800863

RESUMO

The human monocyte cell line U937 was differentiated into an adherent macrophage phenotype using phorbol 12-myristate 13-acetate (PMA) to assay the phagocytosis of oxidized low-density lipoprotein (oxLDL) that may play a role in atherosclerosis. Microbeads were coated with the inflammatory ligand oxLDL to create a novel phagocytosis assay that models the binding of macrophages to oxLDL in the solid phase such as found in the fatty streaks of the arteries. The oxLDL was prepared with LDL from human ethylenediaminetetraacetic acid (EDTA) plasma oxidized with an excess (5 mM) of the strong oxidizing agent CuSO4 and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Western blot. The binding of the oxLDL to the beads was confirmed by DilC18-oxLDL staining and confocal microscopy in addition to trypsin digestion of the microbeads for liquid chromatography, electrospray ionization, and tandem mass spectrometry. Phagocytosis of the oxLDL versus human bulk immunoglobulin G1 (IgG1)-coated microbeads was assayed over time, in the presence and absence of serum factors, by pulse chase and with enzyme inhibitor treatments. The ligand beads were then stained with specific antibodies to oxLDL versus human IgG to differentially stain external versus engulfed ligand microbeads. The phagocytosis of oxLDL and IgG ligand microbeads was abolished by the actin polymerization inhibitors cytochalasin D and latrunculin. Pharmacological inhibitors of the receptor enzymes JAK, SRC, and PLC prevented both IgG and oxLDL receptor function. In contrast, the function of the oxLDL phagocytic receptor complex was more sensitive to inhibition of PTK2, PKC, and SYK activity.


Assuntos
Imunoglobulina G/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Fagocitose , Cromatografia Líquida , Humanos , Espectrometria de Massas por Ionização por Electrospray , Células U937
20.
Nucleic Acids Res ; 44(D1): D590-4, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26656948

RESUMO

MG-RAST (http://metagenomics.anl.gov) is an open-submission data portal for processing, analyzing, sharing and disseminating metagenomic datasets. The system currently hosts over 200,000 datasets and is continuously updated. The volume of submissions has increased 4-fold over the past 24 months, now averaging 4 terabasepairs per month. In addition to several new features, we report changes to the analysis workflow and the technologies used to scale the pipeline up to the required throughput levels. To show possible uses for the data from MG-RAST, we present several examples integrating data and analyses from MG-RAST into popular third-party analysis tools or sequence alignment tools.


Assuntos
Bases de Dados de Ácidos Nucleicos , Metagenômica , Internet , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA