Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Monatsh Chem ; 154(12): 1369-1381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020486

RESUMO

Perylene monoimide based electron acceptors have great properties for use in organic solar cells, like thermal stability, strong absorption, and simple synthesis. However, they typically exhibit low values for the dielectric permittivity. This hinders efficient exciton dissociation, limiting the achievable power conversion efficiencies. In this work, we present the synthesis and utilization of two new acceptor-donor-acceptor (A-D-A) molecules, comprising perylene monoimide as electron withdrawing A unit. Oligo ethylene glycol side chain modified carbazole (PMI-[C-OEG]) and fluorene (PMI-[F-OEG]) linkers were used as electron rich D units, respectively. The polar side chains are expected to increase the polarizability of the molecules and, thus, their permittivity according to the Clausius-Mossotti relationship. We found that the incorporation of glycol chains improved the dielectric properties of both materials in comparison to the reference compounds with alkyl chains. The permittivity increased by 18% from 3.17 to 3.75 for the carbazole-based non-fullerene acceptor PMI-[C-OEG] and by 12% from 3.10 to 3.47 for the fluorene-based acceptor PMI-[F-OEG]. The fabricated solar cells revealed power conversion efficiencies of 3.71 ± 0.20% (record 3.92%) with PMI-[C-OEG], and 1.21 ± 0.06% (record 1.51%) with PMI-[F-OEG]. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02956-2.

2.
Chemistry ; 29(57): e202301337, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37419861

RESUMO

Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.

3.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376240

RESUMO

Biobased and biodegradable polymers (BBDs) such as poly(3-hydroxy-butyrate), PHB, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are considered attractive alternatives to fossil-based plastic materials since they are more environmentally friendly. One major problem with these compounds is their high crystallinity and brittleness. In order to generate softer materials without using fossil-based plasticizers, the suitability of natural rubber (NR) as an impact modifier was investigated in PHBV blends. Mixtures with varying proportions of NR and PHBV were generated, and samples were prepared by mechanical mixing (roll mixer and/or internal mixer) and cured by radical C-C crosslinking. The obtained specimens were investigated with respect to their chemical and physical characteristics, applying a variety of different methods such as size exclusion chromatography, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal analysis, XRD, and mechanical testing. Our results clearly indicate that NR-PHBV blends exhibit excellent material characteristics including high elasticity and durability. Additionally, biodegradability was tested by applying heterologously produced and purified depolymerases. pH shift assays and morphology analyses of the surface of depolymerase-treated NR-PHBV through electron scanning microscopy confirmed the enzymatic degradation of PHBV. Altogether, we prove that NR is highly suitable to substitute fossil-based plasticizers; NR-PHBV blends are biodegradable and, hence, should be considered as interesting materials for a great number of applications.

4.
ACS Sustain Chem Eng ; 11(7): 2819-2829, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36844751

RESUMO

Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.

5.
Polym Chem ; 14(8): 907-912, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36846093

RESUMO

In this work, we have described a family of bio-based polycarbonates (PC-MBC) based on the unique lignin-derived aliphatic diol 4,4'-methylenebiscyclohexanol (MBC) that was sustainably sourced from lignin oxidation mixture. The detailed structure analysis of these polycarbonates has been confirmed by a series of 2D NMR (HSQC and COSY) characterizations. Depending on the stereoisomerism of MBC, the PC-MBC displayed a wide achievable T g range of 117-174 °C and high T d5% of >310 °C by variation of the ratio of the stereoisomers of MBC, offering great substitution perspectives towards a bisphenol-containing polycarbonates. Nonetheless, the most here presented PC-MBC polycarbonates were film-forming and transparent.

6.
J Mater Chem A Mater ; 10(6): 2888-2906, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35223040

RESUMO

A perylene-based acceptor (PMI-FF-PMI), consisting of two perylene monoimide (PMI) units bridged with a dihydroindeno[1,2-b]fluorene molecule was developed as a potential non-fullerene acceptor (NFA) for organic solar cells (OSCs). The synthesized NFA was combined with the high-performance donor polymer D18 to fabricate efficient OSCs. With an effective bandgap of 2.02 eV, the D18:PMI-FF-PMI blend can be categorized as a wide-bandgap OSC and is an attractive candidate for application as a wide-bandgap sub-cell in all-organic triple-junction solar cell devices. Owing to their large effective bandgap, D18:PMI-FF-PMI solar cells are characterized by an extremely high open-circuit voltage (V OC) of 1.41 V, which to the best of our knowledge is the highest reported value for solution-processed OSCs so far. Despite the exceptionally high V OC of this blend, a comparatively large non-radiative voltage loss (ΔV non-rad OC) of 0.25 V was derived from a detailed voltage loss analysis. Measurements of the electroluminescence quantum yield (ELQY) of the solar cell reveal high ELQY values of ∼0.1%, which contradicts the ELQY values derived from the non-radiative voltage loss (ΔV non-rad OC = 0.25 V, ELQY = 0.0063%). This work should help to raise awareness that (especially for BHJ blends with small ΔHOMO or ΔLUMO offsets) the measured ELQY cannot be straightforwardly used to calculate the ΔV non-rad OC. To avoid any misinterpretation of the non-radiative voltage losses, the presented ELQY discrepancies for the D18:PMI-FF-PMI system should encourage OPV researchers to primarily rely on the ΔV non-rad OC values derived from the presented voltage loss analysis based on EQEPV and J-V measurements.

7.
Chemistry ; 28(23): e202200276, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35218252

RESUMO

A series of non-fullerene acceptors based on perylene monoimides coupled in the peri position through phenylene linkers were synthesized via Suzuki-coupling reactions. Various substitution patterns were investigated using density functional theory (DFT) calculations in combination with experimental data to elucidate the geometry and their optical and electrochemical properties. Further investigations of the bulk properties with grazing incidence wide angle X-ray scattering (GIWAXS) gave insight into the stacking behavior of the acceptor thin films. Electrochemical and morphological properties correlate with the photovoltaic performance of devices with the polymeric donor PBDB-T and a maximum efficiency of 3.17 % was reached. The study gives detailed information about structure-property relationships of perylene-linker-perylene compounds.

8.
ACS Appl Energy Mater ; 4(11): 11899-11981, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35856015

RESUMO

Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.

9.
Micron ; 140: 102981, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33202362

RESUMO

Electron energy-loss spectroscopy (EELS) is a powerful tool for imaging chemical variations at the nanoscale. Here, we investigate a polymer/organic small molecule-blend used as absorber layer in an organic solar cell and employ EELS for distinguishing polymer donor and small molecule acceptor domains in the nanostructured blend based on elemental maps of light elements, such as nitrogen, sulfur or fluorine. Especially for beam sensitive samples, the electron dose needs to be limited, therefore optimized acquisition and data processing strategies are required. We compare data acquired on a post-column energy filter with a direct electron detection camera to data from a conventional CCD camera on the same filter and we investigate the impact of statistical data processing methods (principal components analysis, PCA) on acquired spectra and elemental maps extracted from spectrum images. Our work shows, that the quality of spectra on a direct electron detection camera is far superior to conventional CCD imaging, and thereby allows clear identification of ionization edges and the fine structure of these edges. For the quality of the elemental maps, the application of PCA is essential to allow a clear separation between the donor and acceptor phase in the bulk heterojunction absorber layer of a non-fullerene organic solar cell.

10.
Dalton Trans ; 49(41): 14564-14575, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107536

RESUMO

Metal xanthates are versatile single source precursors for the preparation of various metal sulfides. In this study, we present the synthesis of the two novel zinc xanthate complexes bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(N,N,N',N'-tetramethylethylenediamine)zinc(ii) and bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(pyridine)zinc(ii). A thorough investigation of these compounds revealed distinct differences in their structural and thermal properties. While in the complex containing the chelating tetramethylethylenediamine, the xanthate groups coordinate in a monodentate way, they are bidentally coordinated to the zinc atom in the pyridine containing complex. Both compounds show a two-step thermal decomposition with an onset temperature of 151 °C and 156 °C for the tetramethylethylenediamine and pyridine containing complex, respectively. Moreover, different mechanisms are revealed for the two phases of the decomposition based on high resolution mass spectrometry investigations. By the thermal conversion process nanocrystalline zinc sulfide is produced and the coligand significantly influences its primary crystallite size, which is 4.4 nm using the tetramethylethylenediamine and 11.4 nm using the pyridine containing complex for samples prepared at a temperature of 400 °C.

11.
J Mater Sci ; 54(13): 10065-10076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057182

RESUMO

Herein, we report the synthesis of a novel, tetrazine-based conjugated polymer. Tetrazines have the benefit of being strong electron acceptors, while little steric hindrance is imposed on the flanking thiophene rings. Conversion of a suitably substituted nitrile precursor led to 3,6-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-1,2,4,5-tetrazine (2OD-TTz). Palladium-catalyzed copolymerization of 2OD-TTz with a bithiophene monomer yielded an alternating tetrazine-quaterthiophene copolymer (PTz4T-2OD). The polymer PTz4T-2OD showed an optical band gap of 1.8 eV, a deep HOMO energy level of - 5.58 eV and good solubility. In combination with the non-fullerene acceptor ITIC-F, solar cells with power conversion efficiencies of up to 2.6% were obtained.

12.
Carbohydr Polym ; 203: 219-227, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318207

RESUMO

A generic procedure for the manufacturing of cellulose-metal sulfide multilayered sandwich type thin films is demonstrated at the example of copper indium sulfide. These multilayers were created by alternate spin coating steps of precursors, followed by their conversion using either acidic vapors, or heat treatment. As precursors, cellulose xanthate, a widely available cellulose derivative employed in viscose fiber manufacturing and commercial copper and indium xanthates were used. After conversion of the single layers into cellulose and copper indium sulfide, the film properties (structure, thickness, photoelectric activity) of the single and multilayer systems consisting of alternate layers of cellulose and copper indium sulfide were studied. For the proof of concept, up to five layers were built up, showing a clear separation of the cellulose and the metal sulfide layers as demonstrated using cross sectional analysis using ion slope beam cutting and SEM imaging. Finally, the conversion of xanthates was performed using UV light and a mask, allowing for the creation of 2D patterns.

13.
Inorg Chem ; 57(17): 10576-10586, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30129362

RESUMO

In this contribution, we present the synthesis and characterization of the mixed-anion halogenobismuthate(III) (CH3NH3)6BiI5.22Cl3.78 (MBIC) as an alternative lead-free perovskite-type semiconductor, and discuss its optical, electronic, and photovoltaic properties in comparison to the methylammonium bismuth iodide (CH3NH3)3Bi2I9 (MBI) compound. The exchange of iodide with chloride during synthesis leads to the formation of an orthorhombic A6BX9-type crystal structure ( Cmma, No. 67) with isolated BiX6 octahedra and methylammonium chloride interlayers. The experimentally found optical indirect band gap of 2.25 eV is in good agreement with the calculated value of 2.50 eV derived from DFT simulations. The valence band maximum and the conduction band minimum were determined to be at -6.2 eV and -4.0 eV vs vacuum. Similar to MBI, thin films of MBIC are composed of microcrystalline platelets. Time-resolved photoluminescence measurements show electron transfer of MBIC to mesoporous TiO2. The photovoltaic behavior of both compounds is compared in solar cells with the following device architecture: glass/ITO/compact TiO2/mesoporous TiO2/MBIC or MBI/spiro-OMeTAD/Au. Despite the zero-dimensional structure of MBIC, a maximum power conversion efficiency of 0.18% and a high fill factor of almost 60% were obtained with this material as absorber layer. When stored under inert conditions, these solar cells show an excellent long-term stability over the investigated period of more than 700 days.

14.
Langmuir ; 34(28): 8379-8387, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29902017

RESUMO

Monoglycerides form lipophilic liquid-crystalline (LC) phases when mixed with water. The corresponding LC nanostructures coexist with excess water, which is a necessary condition for the formation of internally nanostructured dispersed particles. These nanostructures comprise bicontinuous cubic phases, inverted hexagonal phases, and inverted micellar cubic phases. The dispersed particles are therefore named cubosomes, hexosomes, or micellar cubosomes. Such dispersions are usually stabilized by hydrophilic high-molecular-weight triblock (TB) copolymers. Another way to stabilize such dispersions is by forming the so-called Pickering or Ramsden emulsions using nanoparticles as stabilizers. In this contribution, we explore the possibility of forming and stabilizing inverted or reverse systems, that is, dispersions of hydrophilic LC phases in an excess oil phase like tetradecane. Our aim was to change from oil-in-water emulsions to water-in-oil emulsions, where the water phase is a LC phase in equilibrium with excess oil and where the oil is nonpolar, for example, an alkane. This work consists of three parts: (1) to find a hexagonal hydrophilic LC phase that can not only incorporate a certain amount of tetradecane but can also coexist with excess tetradecane in the case of higher oil concentration, (2) to find a suitable stabilizer-either polymeric or nanoparticle type-that can stabilize the emulsion without destroying the hexagonal LC phase, and finally (3) to check the stability of this reverse hexosome emulsion. We discovered that it is possible to create a hexagonal hydrophilic LC phase with short-chain nonionic surfactants such as polyethylene glycol alkyl ethers or with high-molecular-weight TB copolymers of type A-B-A. Furthermore, it is possible to successfully stabilize the reverse hexosomes with low hydrophilic-lipophilic balance TB copolymers-either synthesized in our laboratory or commercially available ones-as well as with hydrophobized, commercially available silica nanoparticles.

15.
Monatsh Chem ; 148(5): 795-826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458399

RESUMO

ABSTRACT: Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawback that these high efficiencies can only be obtained with lead-based perovskites and this will arguably be a substantial hurdle for various applications of perovskite-based photovoltaics and their acceptance in society, even though the amounts of lead in the solar cells are low. This fact opened up a new research field on lead-free metal halide perovskites, which is currently remarkably vivid. We took this as incentive to review this emerging research field and discuss possible alternative elements to replace lead in metal halide perovskites and the properties of the corresponding perovskite materials based on recent theoretical and experimental studies. Up to now, tin-based perovskites turned out to be most promising in terms of power conversion efficiency; however, also the toxicity of these tin-based perovskites is argued. In the focus of the research community are other elements as well including germanium, copper, antimony, or bismuth, and the corresponding perovskite compounds are already showing promising properties.

16.
Carbohydr Polym ; 164: 294-300, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325328

RESUMO

The synthesis and characterization of bismuth sulfide-cellulose nanocomposite thin films was explored. The films were prepared using organosoluble precursors, namely bismuth xanthates for Bi2S3 and trimethylsilyl cellulose (TMSC) for cellulose. Solutions of these precursors were spin coated onto solid substrates yielding homogeneous precursor films. Afterwards, a heating step under inert atmosphere led to the formation of thin nanocomposite films of bismuth sulfide nanoparticles within the TMSC matrix. In a second step, the silyl groups were cleaved off by vapors of HCl yielding bismuth sulfide/cellulose nanocomposite films. The thin films were characterized by a wide range of surface sensitive techniques such as atomic force microscopy, attenuated total reflection infrared spectroscopy, transmission electron microscopy and wettability investigations. In addition, the formation of the nanoparticle directly in the TMSC matrix was investigated in situ by GI-SWAXS using a temperature controlled sample stage.

17.
Monatsh Chem ; 148(1): 121-129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127098

RESUMO

ABSTRACT: Highly fluorescent and photostable (2-alkyl)-1H-benzo[de]isoquinoline-1,3(2H)-diones with a polymerizable norbornene scaffold have been synthesized and polymerized using ring-opening metathesis polymerization. The monomers presented herein could be polymerized in a living fashion, using different comonomers and different monomer ratios. All obtained materials showed good film-forming properties and bright fluorescence caused by the incorporated push-pull chromophores. Additionally, one of the monomers containing a methylpiperazine functionality showed protonation-dependent photoinduced electron transfer which opens up interesting applications for logic gates and sensing.

18.
Langmuir ; 32(6): 1550-9, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26811882

RESUMO

In this study, the formation of self-assembled monolayers consisting of three organophosphonic acids (vinyl-, octyl-, and tetradecylphosphonic acid) from isopropanol solutions onto differently activated gold surfaces is studied in situ and in real time using multiparameter surface plasmon resonance (MP-SPR). Data retrieved from MP-SPR measurements revealed similar adsorption kinetics for all investigated organophosphonic acids (PA). The layer thickness of the immobilized PA is in the range of 0.6-1.8 nm corresponding to monolayer-like coverage and correlates with the length of the hydrocarbon chain of the PA molecules. After sintering the surfaces, the PA are irreversibly attached onto the surfaces as proven by X-ray photoelectron spectroscopy and attenuated total reflection infrared and grazing incidence infrared spectroscopy. Potential adsorption modes and interaction mechanisms are proposed.

19.
Adv Funct Mater ; 25(3): 409-420, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25866496

RESUMO

In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.

20.
Scanning ; 36(6): 590-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25183629

RESUMO

Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA