Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 244: 118576, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520833

RESUMO

Diffusion MRI tractography is the only noninvasive method to measure the structural connectome in humans. However, recent validation studies have revealed limitations of modern tractography approaches, which lead to significant mistracking caused in part by local uncertainties in fiber orientations that accumulate to produce larger errors for longer streamlines. Characterizing the role of this length bias in tractography is complicated by the true underlying contribution of spatial embedding to brain topology. In this work, we compare graphs constructed with ex vivo tractography data in mice and neural tracer data from the Allen Mouse Brain Connectivity Atlas to random geometric surrogate graphs which preserve the low-order distance effects from each modality in order to quantify the role of geometry in various network properties. We find that geometry plays a substantially larger role in determining the topology of graphs produced by tractography than graphs produced by tracers. Tractography underestimates weights at long distances compared to neural tracers, which leads tractography to place network hubs close to the geometric center of the brain, as do corresponding tractography-derived random geometric surrogates, while tracer graphs place hubs further into peripheral areas of the cortex. We also explore the role of spatial embedding in modular structure, network efficiency and other topological measures in both modalities. Throughout, we compare the use of two different tractography streamline node assignment strategies and find that the overall differences between tractography approaches are small relative to the differences between tractography- and tracer-derived graphs. These analyses help quantify geometric biases inherent to tractography and promote the use of geometric benchmarking in future tractography validation efforts.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Animais , Córtex Cerebral/diagnóstico por imagem , Conectoma , Camundongos
2.
Neuroimage ; 238: 118250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116154

RESUMO

Mammalian neurons operate at length scales spanning six orders of magnitude; they project millimeters to centimeters across brain regions, are composed of micrometer-scale-diameter myelinated axons, and ultimately form nanometer scale synapses. Capturing these anatomical features across that breadth of scale has required imaging samples with multiple independent imaging modalities. Translating between the different modalities, however, requires imaging the same brain with each. Here, we imaged the same postmortem mouse brain over five orders of spatial resolution using MRI, whole brain micrometer-scale synchrotron x-ray tomography (µCT), and large volume automated serial electron microscopy. Using this pipeline, we can track individual myelinated axons previously relegated to axon bundles in diffusion tensor MRI or arbitrarily trace neurons and their processes brain-wide and identify individual synapses on them. This pipeline provides both an unprecedented look across a single brain's multi-scaled organization as well as a vehicle for studying the brain's multi-scale pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Multimodal/métodos , Animais , Conectoma , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica , Tomografia Computadorizada por Raios X
3.
Magn Reson Med ; 86(2): 1067-1076, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33768633

RESUMO

PURPOSE: To introduce synchrotron X-ray microcomputed tomography (microCT) and demonstrate its use as a natively isotropic, nondestructive, 3D validation modality for diffusion MRI in whole, fixed mouse brain. METHODS: Postmortem diffusion MRI and microCT data were acquired of the same whole mouse brain. Diffusion data were processed using constrained spherical deconvolution. Synchrotron data were acquired at an isotropic voxel size of 1.17 µm. Structure tensor analysis was used to calculate fiber orientation distribution functions from the microCT data. A pipeline was developed to spatially register the 2 datasets in order to perform qualitative comparisons of fiber geometries represented by fiber orientation distribution functions. Fiber orientations from both modalities were used to perform whole-brain deterministic tractography to demonstrate validation of long-range white matter pathways. RESULTS: Fiber orientation distribution functions were able to be extracted throughout the entire microCT dataset, with spatial registration to diffusion MRI simplified due to the whole brain extent of the microCT data. Fiber orientations and tract pathways showed good agreement between modalities. CONCLUSION: Synchrotron microCT is a potentially valuable new tool for future multi-scale diffusion MRI validation studies, providing comparable value to optical histology validation methods while addressing some key limitations in data acquisition and ease of processing.


Assuntos
Síncrotrons , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Camundongos , Substância Branca/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA