Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant Sci ; 340: 111964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159611

RESUMO

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.


Assuntos
Nanoestruturas , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Temperatura
3.
Physiol Mol Biol Plants ; 29(5): 613-627, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363421

RESUMO

Vetiver [Vetiveria zizanioides (L.) Roberty] is a perennial C-4 grass traditionally valued for its aromatic roots/root essential oil. Owing to its deep penetrating web-forming roots, the grass is now widely used across the globe for phytoremediation and the conservation of soil and water. This study has used the transcriptome data of vetiver roots in its two distinct geographic morphotypes (North Indian type A and South Indian type B) for reference gene(s) identification. Further, validation of reference genes using various abiotic stresses such as heat, cold, salt, and drought was carried out. The de novo assembly based on differential genes analysis gave 1,36,824 genes (PRJNA292937). Statistical tests like RefFinder, NormFinder, BestKeeper, geNorm, and Delta-Ct software were applied on 346 selected contigs. Eleven selected genes viz., GAPs, UBE2W, RP, OSCam2, MUB, RPS, Core histone 1, Core histone 2, SAMS, GRCWSP, PLDCP along with Actin were used for qRT-PCR analysis. Finally, the study identified the five best reference genes GAPs, OsCam2, MUB, Core histone 1, and SAMS along with Actin. The two optimal reference genes SAMS and Core histone 1 were identified with the help of qbase + software. The findings of the present analyses have value in the identification of suitable reference gene(s) in transcriptomic and molecular data analysis concerning various phenotypes related to abiotic stress and developmental aspects, as well as a quality control measure in gene expression experiments. Identifying reference genes in vetiver appears important as it allows for accurate normalization of gene expression data in qRT-PCR experiments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01315-7.

4.
J Hazard Mater ; 454: 131418, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104951

RESUMO

Chromium (VI) is one of the hazardous heavy metal, heavily discharged into the soil and severely hampers the plants yield. The TiO2 NPs was selected due to its potential to alleviate the heavy metals toxicity. This manuscript unravels the mechanisms for Cr(VI) induced toxicity and how foliar application of TiO2 NPS potentially ameliorate the toxicity by regulating the photosynthetic attributes, DNA damage, antioxidants defense machinery, and phytochelatins synthesis in Helianthus annuus L. Plants were exposed to Cr(VI) concentrations [0, 15, 30, and 60 mg Cr(VI) kg-1 of soil], and TiO2 NPS (15 mg L-1, 25 nm size) were foliar sprayed thrice to the plants at three days interval. The maximum accumulation of total chromium was recorded in root (12.53 µg g-1 DW) followed by shoot (5.67 µg g-1 DW) at 60 mg Cr(VI) treatment. The presence and localization of TiO2 NPs inside the plant leaf cells were confirmed by TEM-EDS analysis. The results revealed that Cr(VI) exposure had a dose-dependent inhibitory effects on photosynthetic attributes, structure of guard and epidermal cells, photosynthetic pigments; inducing impacts on H2O2 and MDA productions, DNA damage, AsA-GSH cycle, and most importantly on PC2, and PC3 synthesis which is rarely reported. However, TiO2 NPs exposure minimized Cr(VI) induced toxicity through reduction of total chromium accumulation, H2O2 and MDA productions, thereby reducing DNA damage reported first time under combined treatment of Cr(VI)+ TiO2 NPs as evidenced through comet assay. It also positively regulate the photosynthetic pigments, AsA-GSH cycle, and modulates PC2 and PC3 synthesis which have crucial impacts on ROS quenching and Cr(VI) detoxification, respectively, and in turn, minimizes Cr(VI) toxicity in H. annuus L. Besides, this study strengthens the less acknowledged report that Cr(VI) is an inducer of PCs synthesis and also confirms that TiO2 NPs potentially counteract Cr(VI) toxicity.


Assuntos
Helianthus , Nanopartículas , Antioxidantes/farmacologia , Fitoquelatinas , Peróxido de Hidrogênio , Cromo/toxicidade , Dano ao DNA , Solo
5.
Environ Pollut ; 320: 121049, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627046

RESUMO

Environmental sources of chromium (Cr) such as solid waste, battery chemicals, industrial /waste, automotive exhaust emissions, mineral mining, fertilizers, and pesticides, have detrimental effects on plants. An excessive amount of Cr exposure can lead to toxic accumulations in human, animal, and plant tissues. In plants, diverse signaling molecules like hydrogen sulfide (H2S) and nitric oxide (NO) play multiple roles during Cr stress. Consequently, the molecular mechanisms of Cr toxicity in plants, such as metal binding, modifying enzyme activity, and damaging cells are examined by several studies. The reactive oxygen species (ROS) that are formed when Cr reacts with lipids, membranes, DNA, proteins, and carbohydrates are all responsible for damage caused by Cr. ROS regulate plant growth, programmed cell death (PCD), cell cycle, pathogen defense, systemic communication, abiotic stress responses, and growth. Plants accumulate Cr mostly through the root system, with very little movement to the shoots. The characterization of stress-inducible proteins and metabolites involved in Cr tolerance and cross-talk messengers has been made possible due to recent advances in metabolomics, transcriptomics, and proteomics. This review discusses Cr absorption, translocation, subcellular distribution, and cross-talk between secondary messengers as mechanisms responsible for Cr toxicity and tolerance in plants. To mitigate this problem, soil-plant systems need to be monitored for the biogeochemical behavior of Cr and the identification of secondary messengers in plants.


Assuntos
Cromo , Poluentes do Solo , Humanos , Cromo/química , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Transdução de Sinais , Poluentes do Solo/metabolismo
6.
Int J Phytoremediation ; 25(2): 187-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35549957

RESUMO

Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein's (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.


Assuntos
Metais Pesados , Biodegradação Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Sementes/química , Sementes/metabolismo , Produtos Agrícolas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Data Brief ; 43: 108377, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761993

RESUMO

The present article represents the data for analysis of microbial consortium (P.putida+C.vulgaris) mediated amelioration of arsenic toxicity in rice plant. In the current study the transcriptome profiling of treated rice root and shoot was performed by illumina sequencing (Platform 2000). To process the reads and to analyse differential gene expression, Fastxtoolkit, NGSQCtoolkit, Bowtie 2 (version 2.1.0), Tophat program (version 2.0.8), Cufflinks and Cuffdiff programs were used. For Proteome profiling, total soluble proteins in shoot of rice plant among different treatments were extracted and separated by 2D poly acrylamide gel electrophoresis (PAGE) and then proteins were identified with the help of MALDI-TOF/TOF. In gel based method of protein identification, the isoelectric focusing machine (IPGphor system,Bio-Rad USA), gel unit (SDS-PAGE) and MALDI-TOF/TOF (4800 proteomic analyzer Applied Biosystem, USA) were used for successful separation and positive identification of proteins. To check the differential abundance of proteins among different treatments, PDQuest software was used for data analysis. For protein identification, Mascot search engine (http://www.matrixscience.com) using NCBIprot/SwissProt databases of rice was used. The analyzed data inferred comprehensive picture of key genes and their respective proteins involved in microbial consortium mediated improved plant growth and amelioration of As induced phyto-toxicity in rice. For the more comprehensive information of data, the related full-length article entitled "Microbial consortium mediated growth promotion and Arsenic reduction in Rice: An integrated transcriptome and proteome profiling" may be accessed.

8.
J Hazard Mater ; 428: 128170, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032955

RESUMO

Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.


Assuntos
Arsênio , Bacillus amyloliquefaciens , Oryza , Arsênio/toxicidade , Raízes de Plantas , Plantas , Silício/toxicidade
9.
Environ Pollut ; 297: 118694, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952182

RESUMO

Rice is a staple crop, and food chain contamination of arsenic in rice grain possesses a serious health risk to billions of population. Arsenic stress negatively affects the rice growth, yield and quality of the grains. Nitric oxide (NO) is a major signaling molecule that may trigger various cellular responses in plants. The protective role of NO during arsenite (AsIII) stress and its relationship with plant physiological and metabolic responses is not explored in detail. Exogenous NO, supplemented through the roots in the form of sodium nitroprusside, has been shown to provide protection vis-à-vis AsIII toxicity. The NO-mediated variation in physiological traits such as stomatal density, size, chlorophyll content and photosynthetic rate maintained the growth of the rice plant during AsIII stress. Besides, NO exposure also enhanced the lignin content in the root, decreased total arsenic content and maintained the activities of antioxidant isoenzymes to reduce the ROS level essential for protecting from AsIII mediated oxidative damage in rice plants. Further, NO supplementation enhanced the GSH/GSSG ratio and PC/As molar ratio by modulating PC content to reduce arsenic toxicity. Further, NO-mediated modulation of the level of GA, IAA, SA, JA, amino acids and phenolic metabolites during AsIII stress appears to play a central role to cope up with AsIII toxicity. The study highlighted the role of NO in AsIII stress tolerance involving modulation of metalloid detoxification and physiological pathways in rice plants.


Assuntos
Arsênio , Metaloides , Oryza , Arsênio/toxicidade , Óxido Nítrico , Estresse Oxidativo , Raízes de Plantas , Estresse Fisiológico
10.
J Biotechnol ; 329: 192-203, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33610657

RESUMO

Soil salinity is one of the critical issue worldwide that adversely affect soil fertility. Salt stress significantly limits crop yield and grain quality; therefore, there is an urgent need to develop a strategy to improve salt stress tolerance. In present study, we reported that rice glutaredoxin (OsGrx_C7) plays a positive response in salt induced stress. Gene expression analysis, silencing, and overexpression of OsGrx_C7 gene were used to discover the role of OsGrx_C7 in response to salt stress. Gene expression analysis suggested that OsGrx_C7 expression was induced under salt stress and ubiquitously expressed in rice including root and shoot. The silencing of osgrx_c7 gene leads to increased sensitivity to salt stress, indicating its importance in salt stress tolerance. A gain-of-function approach showed that OsGrx_C7 may act as an important determinant in salt stress, compared with WT, and revealed higher biomass accumulation, improved root and plant growth under salt stress. Under salt stress condition, OsGrx_C7 overexpressing rice plants showed lower level of lipid peroxidation and Na+/K+ ratio, while proline accumulation, soluble sugar content and GSH/GSSG ratio was higher compared to WT. Furthermore, expression analysis suggested that OsGrx_C7 acted as positive regulator of salt tolerance by reinforcing the expression of transporters (OsHKT2;1, OsHKT1;5 and OsSOS1) engaged in Na+ homeostasis in overexpressing plants. Overall our study revealed that OsGrx_C7 emerged as a key mediator in response to salt stress in rice and could be used for engineering tolerance against salt stress in rice and other crops.


Assuntos
Glutarredoxinas , Oryza , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal/genética , Estresse Fisiológico
11.
Environ Sci Pollut Res Int ; 27(19): 24025-24038, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32301095

RESUMO

Arsenic (As), a toxic metalloid, is finding its route to human through intake of As-contaminated water and consumption of food grown on contaminated soil. Rice is the most As-affected crop. Present study is aimed to assess the impact of stabilized orthosilicic acid (a proprietary formulation for plant-available silicon (Si) and earlier used as fertilizer for rice to enhance growth and yield) in reducing the accumulation of As in rice grains. Application of arsenic in the form of arsenate (AsV) and arsenite (AsIII) significantly affected plant growth in a dose-dependent manner. Higher doses of AsV and AsIII (50 and 25 mg L-1 respectively) significantly decreased the yield attributes leading to lower yield. A significant accumulation of As in grain was observed in both AsV- and AsIII-exposed plants in a dose-dependent manner. Arsenic exposure also increased the level of Si in rice grains. Application of Si, either in soil or on leaves (foliar), greatly reduced grain As accumulation (up to 67% in AsV and 78% in AsIII) and enhanced the growth and yield of plants under As stress. The level of thiols and activities of antioxidant enzymes were also enhanced under Si application. Foliar Si application was more effective in increasing grain Si level and reducing grain As than soil Si. The level of other trace elements was also significantly enhanced by Si application irrespective of the presence or absence of As in comparison with control. Arsenic exposure constrained some of the trace elements, such as Zn and Co, which were restored by Si application. Results of the present study showed that the application of currently used Si formulation may effectively reduce grain As level even in highly As-contaminated soil and improve grain quality of rice.


Assuntos
Arsênio/análise , Oryza , Poluentes do Solo/análise , Oligoelementos , Antioxidantes , Grão Comestível/química , Humanos , Solo , Compostos de Sulfidrila
12.
Ecotoxicol Environ Saf ; 195: 110471, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203773

RESUMO

Rice is the most consumed food crop and essential determinant in global food security program. Currently, arsenic (As) accumulation in rice is a critical concern in terms of both crop productivity and grain quality; therefore, it is an urgent need to reduce As accumulation. Here, we selected a glutaredoxin (OsGrx_C7) gene that plays an essential role in AsIII tolerance in rice. To explore the mechanism, we raised OsGrx_C7 overexpression (OE) rice lines, which showed improved plant AsIII tolerance and lowered its accumulation in grains. Arsenic accumulation in husk, unpolished, and polished rice reduced by ca. 65%, 67%, and 85%, respectively, in OE lines, compared to wild-type (WT) plants. To know the rationale, expression of AsIII transporters (aquaporins) in root and shoot tissues were examined, and revealed that OsGrx_C7 regulates the expression of these genes, which ultimately reduces root to shoot AsIII translocation. Additionally, OsGrx_C7 improves root growth by regulating the expression of oxidative stress-induced root expansion related genes, promote root growth and plant health. Overall, current study suggested that AsIII induced OsGrx_C7 markedly enhanced tolerance to AsIII with reduced accumulation in grains by regulating root expansion and controlling root to shoot As transport by altered expression of AsIII aquaporins.


Assuntos
Aquaporinas/genética , Glutarredoxinas/genética , Oryza/genética , Aquaporinas/metabolismo , Arsênio/farmacocinética , Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Raízes de Plantas/metabolismo
13.
Environ Monit Assess ; 192(4): 221, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146574

RESUMO

The deterioration of water quality of river Ganga is a huge concern for Govt. of India. Apart from various pollution sources, the religious and ritualistic activities also have a good share in deteriorating Ganga water quality. Thus, the aim of the present study was to evaluate the changes in physico-chemical properties, microbial diversity and role of bacteriophages in controlling bacterial population of Ganga water during mass ritualistic bathing on the occasion of Maha-Kumbh in 2013. The BOD, COD, hardness, TDS and level of various ions significantly increased, while DO decreased in Ganga water during Maha-Kumbh. Ganga water was more affluent in trace elements than Yamuna and their levels further increased during Maha-Kumbh, which was correlated with decreased level of trace elements in the sediment. The bacterial diversity and evenness were increased and correlated with the number of devotees taking a dip at various events. Despite enormous increase in bacterial diversity during mass ritualistic bathing, the core bacterial species found in pre-Kumbh Ganga water were present in all the samples taken during Kumbh and post-Kumbh. In addition, the alteration in bacterial population during mass bathing was well under 2 log units which can be considered negligible. The study of bacteriophages at different bathing events revealed that Ganga was richer with the presence of bacteriophages in comparison with Yamuna against seven common bacteria found during the Maha-Kumbh. These bacteriophages have played a role in controlling bacterial growth and thus preventing putrefaction of Ganga water. Further, the abundance of trace elements in Ganga water might also be a reason for suppression of bacterial growth. Thus, the current study showed that Ganga has characteristic water quality in terms of physico-chemical property and microbial diversity that might have a role in the reported self-cleansing property of Ganga; however, the increased pollution load has surpassed its self-cleansing properties. Since water has been celebrated in all cultures, the outcome of the current study will not only be useful for the policy maker of cleaning and conservation of Ganga but also for restoration of other polluted rivers all over the world.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Qualidade da Água , Índia , Rios
14.
J Hazard Mater ; 390: 122122, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006842

RESUMO

Arsenic (As), a chronic poison and non-threshold carcinogen, is a food chain contaminant in rice, posing yield losses as well as serious health risks. Selenium (Se), a trace element, is a known antagonist of As toxicity. In present study, RNA seq. and proteome profiling, along with morphological analyses were performed to explore molecular cross-talk involved in Se mediated As stress amelioration. The repair of As induced structural deformities involving disintegration of cell wall and membranes were observed upon Se supplementation. The expression of As transporter genes viz., NIP1;1, NIP2;1, ABCG5, NRAMP1, NRAMP5, TIP2;2 as well as sulfate transporters, SULTR3;1 and SULTR3;6, were higher in As + Se compared to As alone exposure, which resulted in reduced As accumulation and toxicity. The higher expression of regulatory elements like AUX/IAA, WRKY and MYB TFs during As + Se exposure was also observed. The up-regulation of GST, PRX and GRX during As + Se exposure confirmed the amelioration of As induced oxidative stress. The abundance of proteins involved in photosynthesis, energy metabolism, transport, signaling and ROS homeostasis were found higher in As + Se than in As alone exposure. Overall, present study identified Se responsive pathways, genes and proteins involved to cope-up with As toxicity in rice.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selênio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , RNA-Seq , Transcriptoma/efeitos dos fármacos
15.
Environ Int ; 117: 327-338, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29783191

RESUMO

BACKGROUND: The water quality of Ganga, the largest river in Indian sub-continent and life line to hundreds of million people, has severely deteriorated. Studies have indicated the presence of high level of carcinogenic elements in Ganga water. OBJECTIVES: We performed extensive review of sources and level of organic, inorganic pollution and microbial contamination in Ganga water to evaluate changes in the level of various pollutants in the recent decade in comparison to the past and potential health risk for the population through consumption of toxicant tainted fishes in Ganga basin. METHODS: A systematic search through databases, specific websites and reports of pollution regulatory agencies was conducted. The state wise level of contamination was tabulated along the Ganga river. We have discussed the major sources of various pollutants with particular focus on metal/metalloid and pesticide residues. Bioaccumulation of toxicants in fishes of Ganga water and potential health hazards to humans through consumption of tainted fishes was evaluated. RESULTS: The level of pesticides in Ganga water registered a drastic reduction in the last decade (i.e. after the establishment of National Ganga River Basin Authority (NGRBA) in 2009), still the levels of some organochlorines are beyond the permissible limits for drinking water. Conversely the inorganic pollutants, particularly carcinogenic elements have increased several folds. Microbial contamination has also significantly increased. Hazard quotient and hazard index indicated significant health risk due to metal/metalloid exposure through consumption of tainted fishes from Ganga. Target cancer risk assessment showed high carcinogenic risk from As, Cr, Ni and Pb as well as residues of DDT and HCHs. CONCLUSION: Current data analysis showed that Ganga water quality is deteriorating day by day and at several places even in upper stretch of Ganga the water is not suitable for domestic uses. Although there is positive impact of ban on persistent pesticides with decreasing trend of pesticide residues in Ganga water, the increasing trend of trace and toxic elements is alarming and the prolong exposure to polluted Ganga water and/or consumption of Ganga water fishes may cause serious illness including cancer.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição da Água/análise , Qualidade da Água , Animais , Peixes , Humanos , Índia , Metais Pesados/análise , Resíduos de Praguicidas/análise
16.
J Hazard Mater ; 351: 177-187, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29533890

RESUMO

Rice grown in arsenic (As) contaminated areas contributes to high dietary exposure of As inducing multiple adverse effects on human health. The As contamination and application of phosphate fertilizers during seedling stage creates a high P and As stress condition. The flooded paddy fields are also conducive for algal growth and microbial activity. The present study proposes potential role of microalgae, Chlorella vulgaris (CHL) and bacteria, Pseudomonas putida (RAR) on rice plant grown under excess As and phosphate (P) conditions. The results show synchronized interaction of CHL + RAR which, reduces As uptake through enhanced P:As and reduced As:biomass ratio by modulating P trafficking. Gene expression analysis of different phosphate transporters exhibited correlation with reduced As uptake and other essential metals. The balancing of reactive oxygen species (ROS), proline accumulation, hormone modulation, and As sequestration in microbial biomass were elucidated as possible mechanisms of As detoxification. The study concludes that RAR and CHL combination mitigates the As stress during P-enriched conditions in rice by: (i) reducing As availability, (ii) modulating the As uptake, and (iii) improving detoxification mechanism of the plant. The study will be important in assessing the role and applicability of P solubilizing biofertilizers in these conditions.


Assuntos
Arsênio/metabolismo , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Pseudomonas putida/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Consórcios Microbianos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética
17.
J Hazard Mater ; 344: 626-634, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29112921

RESUMO

Rice (Oryza sativa L.) grown on arsenic-containing soil and water become a primary dietary source of arsenic and pose a significant health risk. Gene modification is an important and practical approach to reduce arsenic accumulation in rice grains. Here, we reported a WaarsM gene of soil fungus Westerdykella aurantiaca, expressed in rice able to convert toxic inorganic arsenicals to methylated arsenic species, therefore, reduce arsenic accumulation in rice grains. In response to arsenic treatment in hydroponics, WaarsM expressing transgenic lines showed a marked increase in arsenic resistance and reduces its accumulation compared to NT. Also, WaarsM expressing transgenic Line 1 evolved ca. 157ng and ca. 43ng volatile arsenicals (mg-1 fresh weight) after 72h of exposure to 25µM AsIII and 250µM AsV, respectively. Transgenic Line 1, grown in soil irrigated with arsenic-containing water accumulates about 50% and 52% lower arsenic than NT in shoot and root, respectively; while arsenic concentration in polished seeds and husk of the transgenic line was reduced by 52% compared to NT. Thus, the present study demonstrates that the expression of WaarsM in rice induces arsenic methylation and volatilization, provides a potential strategy to reduce arsenic accumulation in rice grain.


Assuntos
Arsênio/metabolismo , Proteínas Fúngicas/metabolismo , Metiltransferases/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Grão Comestível/metabolismo , Contaminação de Alimentos/prevenção & controle , Proteínas Fúngicas/genética , Metilação , Metiltransferases/genética , Oryza/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Volatilização
18.
Sci Rep ; 7(1): 3592, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620222

RESUMO

Arsenic (As) contamination in rice leads to yield decline and causes carcinogenic risk to human health. Although the role of nitric oxide (NO) in reducing As toxicity is known, NO-mediated genetic modulation in the plant during arsenic toxicity has not yet been established. We analyzed the key components of NO metabolism and the correlations between NO interaction and arsenic stress using rice as a relevant model plant. Illumina sequencing was used to investigate the NO-mediated genome-wide temporal transcriptomic modulation in rice root upon AsIII exposure during 12 days (d) of the growth period. Sodium nitroprusside (SNP) was used as NO donor. SNP supplementation resulted in marked decrease in ROS, cell death and As accumulation during AsIII stress. NO was found to modulate metal transporters particularly NIP, NRAMP, ABC and iron transporters, stress related genes such as CytP450, GSTs, GRXs, TFs, amino acid, hormone(s), signaling and secondary metabolism genes involved in As detoxification. We detected NO-mediated change in jasmonic acid (JA) content during AsIII stress. The study infers that NO reduces AsIII toxicity through modulating regulatory networks involved in As detoxification and JA biosynthesis.


Assuntos
Arsênio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Oryza/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/análise
19.
Plant Physiol Biochem ; 115: 163-173, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28371690

RESUMO

Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (AsIII) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of AsIII on plant growth. Nitric oxide supplementation to AsIII treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether AsIII was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for AsIII uptake. The endogenous level of NO and SA were positively correlated to each other either when AsIII was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in AsIII stressed plants.


Assuntos
Arsenitos/toxicidade , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroponia , Ferro/metabolismo , Óxido Nítrico/farmacologia , Plântula
20.
Ecotoxicol Environ Saf ; 138: 47-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28006731

RESUMO

Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selenito de Sódio/farmacologia , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Arsênio/metabolismo , Arsenitos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Metais Pesados/metabolismo , NADPH Oxidases/metabolismo , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Compostos de Sulfidrila/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA