Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(9): e16692, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39206693

RESUMO

Species of the genus Blautia are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen Blautia schinkii can grow on myo-inositol. We identified the pathway of myo-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, myo-inositol is oxidized to 2-keto-myo-inositol. This compound is then metabolized by a series of enzymes - a dehydratase, hydrolase, isomerase and kinase - to form 2-deoxy-5-keto-d-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden-Meyerhof-Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for myo-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.


Assuntos
Inositol , Inositol/metabolismo , Inositol/análogos & derivados , Humanos , Clostridiales/genética , Clostridiales/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/análogos & derivados
2.
Environ Microbiol ; 25(12): 3577-3591, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807918

RESUMO

The human gut is an anoxic environment that harbours a multitude of microorganisms that not only contribute to food digestion. The microbiome is also involved in malfunctions such as diseases, inflammation processes or development of obesity, but it is also involved in processes that increase the human well-being. Both, the good and the bad, are mediated by fermentation end products of bacterial metabolism, among others. However, despite a steadily growing knowledge of 'who lives out there', little in known of 'what do they do out there'. The genus Blautia is commonly found in the gut and associated with human well-being, but the exploration of their metabolic potential has just started. We demonstrate that B. schinkii grows on glycerol by producing acetate and ethanol. Transcriptome studies and biochemical analyses revealed a glycerol dehydrogenase and dihydroxyacetone kinase that funnel the substrate into glycolysis. Consequently, cells also grew on dihydroxyacetone. Cells could be adapted to grow at high (up to 1.5 M) glycerol concentrations but then only ethanol was formed. Ethanol production from glycerol is not only of relevance for the human host but also for potential bioindustrial production of bioethanol from waste glycerol.


Assuntos
Glicerol , Glicólise , Humanos , Glicerol/metabolismo , Fermentação , Glicólise/genética , Etanol/metabolismo
3.
Nature ; 607(7920): 823-830, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859174

RESUMO

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Assuntos
Dióxido de Carbono , Membrana Celular , Hidrogênio , Hidrogenase , Nanofios , Dióxido de Carbono/metabolismo , Membrana Celular/enzimologia , Microscopia Crioeletrônica , Estabilidade Enzimática , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Mutação , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Thermoanaerobacter/citologia , Thermoanaerobacter/enzimologia
4.
Environ Microbiol ; 24(7): 3111-3123, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466558

RESUMO

Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood-Ljungdahl pathway (WLP) of acetogenesis from H2  + CO2 . Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2  + CO2 . Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2  + CO2 nor H2  + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. Blautia luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2  + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2  + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome.


Assuntos
Formiato Desidrogenases , Hidrogenase , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Clostridiales , Formiato Desidrogenases/genética , Humanos , Hidrogenase/genética , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA