Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Chem Inf Model ; 63(8): 2331-2344, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37023262

RESUMO

Heterocyclic compounds have a prominent role in medicinal chemistry and drug design. They are not only useful as medicinally active compounds but also as a modular structural scaffold for drug design. Therefore, heterocycles are present in many ligands that exhibit a broad spectrum of biological activities. Pyazolopyrimidines are nitrogen heterocycles and are part of many biologically active compounds and marketed drugs. This study examines the non-covalent interactions between the pyrazolopyrimidine rings and receptor proteins through data mining and analysis of high-resolution crystal structures deposited in the Protein Data Bank. The Protein Data Bank contains 471 crystal structures with pyrazolopyrimidine derivatives as ligands, among which 50% contains 1H-pyrazolo[3,4-d]pyrimidines (Pyp1), while 38% contains pyrazolo[1,5-a] pyrimidines (Pyp2). 1H-Pyrazolo[4,3-d]pyrimidines (Pyp3) are found in 11% of the structures, and no structural data is available for pyrazolo[1,5-c]pyrimidine isomers (Pyp4). Among receptor proteins, transferases are found in most examples (67.5%), followed by hydrolases (13.4%) and oxidoreductases (8.9%). Detailed analysis of structures to identify the most prevalent interactions of pyrazolopyrimidines with proteins shows that aromatic π···π interactions are present in ∼91% of the structures and hydrogen bonds/other polar contacts are present in ∼73% of the structures. The centroid-centroid distances (dcent) between the pyrazolopyrimidine rings and aromatic side chains of the proteins have been retrieved from crystal structures recorded at a high resolution (data resolution <2.0 Å). The average value of dcent in pyrazolopyrimidine-protein complexes is 5.32 Å. The information on the geometric parameters of aromatic interactions between the core pyrazolopyrimidine ring and the protein would be helpful in future in silico modeling studies on pyrazolopyrimidine-receptor complexes.


Assuntos
Pirimidinas , Isomerismo , Pirimidinas/química , Proteínas/química
3.
Acta Crystallogr C Struct Chem ; 77(Pt 12): 757-763, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864717

RESUMO

The crystal structure of the heterocyclic compound 2-(4-methoxyphenyl)-7-phenylpyrazolo[1,5-c]pyrimidine, C19H15N3O, has been determined and its self-assembly on the surface of graphite has been examined using atomic force microscopy (AFM). The title compound crystallized in the monoclinic space group P21/c, with two independent molecules in the asymmetric unit. The packing of the L-shaped molecules in the crystal is governed by arene interactions, in the absence of any conventional hydrogen-bonding interactions. The packing arrangement reveals four types of dimeric motifs stabilized by π-π and C-H...π interactions. At low coverage, molecules assemble into long needle-like islands on the graphite surface. High-resolution AFM images reveal that the molecules interact through weak noncovalent interactions between the aromatic H atoms and the methoxy O atoms.

4.
Bioorg Med Chem Lett ; 50: 128340, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469711

RESUMO

Substituted amide derivatives of C4-ageratochromene dimer analog (19) were synthesized through structural modification of precocene-I (4a), isolated from the essential oil of Ageratum conyzoides L. The target compounds (18-20, 23I-VI, 24I-VI, and 25I-VI) were evaluated for their bone-forming effect using osteoblast differentiation assay. Seven compounds (23I, 23II, 23IV, 23VI, 24III, 24VI, and 25VI) presented good activity within 1 pM-1 nM concentration. At 1 pM concentration, the most active compound i.e. 23II showed effective mineralization of osteoblast cells along with expression of osteogenic marker genes viz RUNX 2, BMP-2, and type 1 collagen (Type-1 col) without any toxicity towards osteoblast cells. Single crystal X-ray analysis of 18 and 20 revealed that the core nucleus of these molecules bear phenyl rings in a Trans-stilbenoid system and had a good structural correlation with 17ß-estradiol (1) and diethylstilbestrol (DES, 3). In-silico study about 23II showed its structural complementarities with the LBD of estrogen receptor (ER) which indicated possible ER-mediated activity of compounds.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzopiranos/síntese química , Benzopiranos/farmacologia , Conservadores da Densidade Óssea/síntese química , Conservadores da Densidade Óssea/farmacologia , Ageratum/química , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Feminino , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Osteoblastos , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA