Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Heredity (Edinb) ; 128(1): 45-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34876658

RESUMO

Many species show replicated ecophenotypy due to recurring patterns of natural selection. Based on the presence or absence of pursuit predators, at least 17 species of fish repeatedly differentiated in body shape in a manner that increases burst swimming speed and the likelihood of predator escape. The predator-associated burst speed (PABS) ecophenotype is characterized by a small head and trunk and enlarged caudal region. Mechanisms promoting replicated phenotype-environment association include selection (without evolution), a single instance of adaptive evolution followed by biased habitat occupation, repeated instances of local adaptation, or adaptive phenotypic plasticity. Common garden rearing of mosquitofish, Gambusia affinis, demonstrated a likely heritable basis for PABS phenotypy, but it is unknown whether populations are otherwise genetically distinct or whether replicated ecophenotypy represents a single or replicated instances of adaptation. To genetically characterize the populations and test hypotheses of single or multiple adaptations, we characterized variation in 12 polymorphic DNA microsatellites in the previously studied G. affinis populations. Populations were genetically distinct by multilocus analysis, exhibited high allelic diversity, and were heterozygote deficient, which effects were attributed to G. affinis's shoaling nature and habitat patchiness. Genetic and phenotypic distances among populations were correlated for non-PABS but not PABS morphology. Multilocus analysis demonstrated ecophenotype polyphyly and scattered multivariate genetic structure which support only the replicated-adaptation model. As all of the diverse tests performed demonstrated lack of congruence between patterns of molecular genetic and PABS differentiation, it is likely that divergent natural selection drove multiple instances of adaptive evolution.


Assuntos
Ciprinodontiformes , Animais , Evolução Biológica , Ciprinodontiformes/genética , Ecossistema , Genética Populacional , Fenótipo , Seleção Genética
2.
Microbiol Spectr ; 9(2): e0108921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643445

RESUMO

Routine testing for SARS-CoV-2 is rare for institutes of higher education due to prohibitive costs and supply chain delays. During spring 2021, we routinely tested all residential students 1 to 2 times per week using pooled, RNA-extraction-free, reverse transcription quantitative PCR (RT-qPCR) testing of saliva at a cost of $0.43/sample with same-day results. The limit of detection was 500 copies/ml on individual samples, and analysis indicates 1,000 and 2,500 copies/ml in pools of 5 and 10, respectively, which is orders of magnitude more sensitive than rapid antigen tests. Importantly, saliva testing flagged 83% of semester positives (43,884 tests administered) and was 95.6% concordant with nasopharyngeal diagnostic results (69.0% concordant on the first test when the nucleocapsid gene (N1) cycle threshold (CT) value was >30). Moreover, testing reduced weekly cases by 59.9% in the spring despite far looser restrictions, allowing for more normalcy while eliminating outbreaks. We also coupled our testing with a survey to clarify symptoms and transmissibility among college-age students. While only 8.5% remained asymptomatic throughout, symptoms were disparate and often cold-like (e.g., only 37.3% developed a fever), highlighting the difficulty with relying on symptom monitoring among this demographic. Based on reported symptom progression, we estimate that we removed 348 days of infectious individuals by routine testing. Interestingly, viral load (CT value) at the time of testing did not affect transmissibility (R2 = 0.0085), though those experiencing noticeable symptoms at the time of testing were more likely to spread the virus to close contacts (31.6% versus 14.3%). Together, our findings support routine testing for reducing the spread of SARS-CoV-2. Implementation of cost- and resource-efficient approaches should receive strong consideration in communities that lack herd immunity. IMPORTANCE This study highlights the utility of routine testing for SARS-CoV-2 using pooled saliva while maintaining high sensitivity of detection (under 2,500 copies/ml) and rapid turnaround of high volume (up to 930 samples in 8 h by two technicians and one quantitative PCR [qPCR] machine). This pooled approach allowed us to test all residential students 1 to 2 times per week on our college campus during the spring of 2021 and flagged 83% of our semester positives. Most students were asymptomatic or presented with symptoms mirroring common colds at the time of testing, allowing for removal of infectious individuals before they otherwise would have sought testing. To our knowledge, the total per-sample consumable cost of $0.43 is the lowest to date. With many communities still lagging in vaccination rates, routine testing that is cost-efficient highlights the capacity of the laboratory's role in controlling the spread of SARS-CoV-2.


Assuntos
Teste de Ácido Nucleico para COVID-19/economia , COVID-19/diagnóstico , Análise Custo-Benefício , Programas de Rastreamento/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , Saliva/virologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Illinois , Limite de Detecção , Programas de Rastreamento/métodos , Nasofaringe/virologia , Fosfoproteínas/genética , SARS-CoV-2/isolamento & purificação , Universidades , Carga Viral/métodos
3.
G3 (Bethesda) ; 8(6): 1855-1861, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29703783

RESUMO

The western mosquitofish, Gambusia affinis, is a freshwater poecilid fish native to the southeastern United States but with a global distribution due to widespread human introduction. Gambusia affinis has been used as a model species for a broad range of evolutionary and ecological studies. We sequenced the genome of a male G. affinis to facilitate genetic studies in diverse fields including invasion biology and comparative genetics. We generated Illumina short read data from paired-end libraries and in vitro proximity-ligation libraries. We obtained 54.9× coverage, N50 contig length of 17.6 kb, and N50 scaffold length of 6.65 Mb. Compared to two other species in the Poeciliidae family, G. affinis has slightly fewer genes that have shorter total, exon, and intron length on average. Using a set of universal single-copy orthologs in fish genomes, we found 95.5% of these genes were complete in the G. affinis assembly. The number of transposable elements in the G. affinis assembly is similar to those of closely related species. The high-quality genome sequence and annotations we report will be valuable resources for scientists to map the genetic architecture of traits of interest in this species.


Assuntos
Ciprinodontiformes/genética , Biblioteca Gênica , Genoma , Espécies Introduzidas , Animais , Elementos de DNA Transponíveis/genética , Masculino , Anotação de Sequência Molecular , RNA de Transferência/genética , RNA não Traduzido/genética , Padrões de Referência , Análise de Sequência de DNA
4.
Mol Ecol ; 24(19): 4848-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26407630

RESUMO

The role of genetic relatedness in the evolution of eusociality has been the topic of much debate, especially when contrasting eusocial insects with vertebrates displaying reproductive altruism. The naked mole-rat, Heterocephalus glaber, was the first described eusocial mammal. Although this discovery was based on an ecological constraints model of eusocial evolution, early genetic studies reported high levels of relatedness in naked mole-rats, providing a compelling argument that low dispersal rates and consanguineous mating (inbreeding as a mating system) are the driving forces for the evolution of this eusocial species. One caveat to accepting this long-held view is that the original genetic studies were based on limited sampling from the species' geographic distribution. A growing body of evidence supports a contrary view, with the original samples not representative of the species-rather reflecting a single founder event, establishing a small population south of the Athi River. Our study is the first to address these competing hypotheses by examining patterns of molecular variation in colonies sampled from north and south of the Athi and Tana rivers, which based on our results, serve to isolate genetically distinct populations of naked mole-rats. Although colonies south of the Athi River share a single mtDNA haplotype and are fixed at most microsatellite loci, populations north of the Athi River are considerably more variable. Our findings support the position that the low variation observed in naked mole-rat populations south of the Athi River reflects a founder event, rather than a consequence of this species' unusual mating system.


Assuntos
Genética Populacional , Endogamia , Ratos-Toupeira/genética , Animais , DNA Mitocondrial/genética , Efeito Fundador , Genótipo , Haplótipos , Quênia , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA