Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534822

RESUMO

This paper introduces the Botox Optimization Algorithm (BOA), a novel metaheuristic inspired by the Botox operation mechanism. The algorithm is designed to address optimization problems, utilizing a human-based approach. Taking cues from Botox procedures, where defects are targeted and treated to enhance beauty, the BOA is formulated and mathematically modeled. Evaluation on the CEC 2017 test suite showcases the BOA's ability to balance exploration and exploitation, delivering competitive solutions. Comparative analysis against twelve well-known metaheuristic algorithms demonstrates the BOA's superior performance across various benchmark functions, with statistically significant advantages. Moreover, application to constrained optimization problems from the CEC 2011 test suite highlights the BOA's effectiveness in real-world optimization tasks.

2.
Sci Rep ; 14(1): 4135, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374395

RESUMO

This study introduces an enhanced self-adaptive wild goose algorithm (SAWGA) for solving economical-environmental-technical optimal power flow (OPF) problems in traditional and modern energy systems. Leveraging adaptive search strategies and robust diversity capabilities, SAWGA distinguishes itself from classical WGA by incorporating four potent optimizers. The algorithm's application to optimize an OPF model on the different IEEE 30-bus and 118-bus electrical networks, featuring conventional thermal power units alongside solar photovoltaic (PV) and wind power (WT) units, addresses the rising uncertainties in operating conditions, particularly with the integration of renewable energy sources (RESs). The inherent complexity of OPF problems in electrical networks, exacerbated by the inclusion of RESs like PV and WT units, poses significant challenges. Traditional optimization algorithms struggle due to the problem's high complexity, susceptibility to local optima, and numerous continuous and discrete decision parameters. The study's simulation results underscore the efficacy of SAWGA in achieving optimal solutions for OPF, notably reducing overall fuel consumption costs in a faster and more efficient convergence. Noteworthy attributes of SAWGA include its remarkable capabilities in optimizing various objective functions, effective management of OPF challenges, and consistent outperformance compared to traditional WGA and other modern algorithms. The method exhibits a robust ability to achieve global or nearly global optimal settings for decision parameters, emphasizing its superiority in total cost reduction and rapid convergence.

3.
PeerJ Comput Sci ; 9: e1557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077609

RESUMO

The whale optimization algorithm (WOA) is a widely used metaheuristic optimization approach with applications in various scientific and industrial domains. However, WOA has a limitation of relying solely on the best solution to guide the population in subsequent iterations, overlooking the valuable information embedded in other candidate solutions. To address this limitation, we propose a novel and improved variant called Pbest-guided differential WOA (PDWOA). PDWOA combines the strengths of WOA, particle swarm optimizer (PSO), and differential evolution (DE) algorithms to overcome these shortcomings. In this study, we conduct a comprehensive evaluation of the proposed PDWOA algorithm on both benchmark and real-world optimization problems. The benchmark tests comprise 30-dimensional functions from CEC 2014 Test Functions, while the real-world problems include pressure vessel optimal design, tension/compression spring optimal design, and welded beam optimal design. We present the simulation results, including the outcomes of non-parametric statistical tests including the Wilcoxon signed-rank test and the Friedman test, which validate the performance improvements achieved by PDWOA over other algorithms. The results of our evaluation demonstrate the superiority of PDWOA compared to recent methods, including the original WOA. These findings provide valuable insights into the effectiveness of the proposed hybrid WOA algorithm. Furthermore, we offer recommendations for future research to further enhance its performance and open new avenues for exploration in the field of optimization algorithms. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/PDWOA.

4.
Sci Rep ; 13(1): 21472, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052945

RESUMO

In this paper, with motivation from the No Free Lunch theorem, a new human-based metaheuristic algorithm named Preschool Education Optimization Algorithm (PEOA) is introduced for solving optimization problems. Human activities in the preschool education process are the fundamental inspiration in the design of PEOA. Hence, PEOA is mathematically modeled in three phases: (i) the gradual growth of the preschool teacher's educational influence, (ii) individual knowledge development guided by the teacher, and (iii) individual increase of knowledge and self-awareness. The PEOA's performance in optimization is evaluated using fifty-two standard benchmark functions encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, as well as the CEC 2017 test suite. The optimization results show that PEOA has a high ability in exploration-exploitation and can balance them during the search process. To provide a comprehensive analysis, the performance of PEOA is compared against ten well-known metaheuristic algorithms. The simulation results show that the proposed PEOA approach performs better than competing algorithms by providing effective solutions for the benchmark functions and overall ranking as the first-best optimizer. Presenting a statistical analysis of the Wilcoxon signed-rank test shows that PEOA has significant statistical superiority in competition with compared algorithms. Furthermore, the implementation of PEOA in solving twenty-two optimization problems from the CEC 2011 test suite and four engineering design problems illustrates its efficacy in real-world optimization applications.


Assuntos
Algoritmos , Professores Escolares , Pré-Escolar , Humanos , Benchmarking , Simulação por Computador , Engenharia
5.
Biomimetics (Basel) ; 8(6)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37887599

RESUMO

This study proposes the One-to-One-Based Optimizer (OOBO), a new optimization technique for solving optimization problems in various scientific areas. The key idea in designing the suggested OOBO is to effectively use the knowledge of all members in the process of updating the algorithm population while preventing the algorithm from relying on specific members of the population. We use a one-to-one correspondence between the two sets of population members and the members selected as guides to increase the involvement of all population members in the update process. Each population member is chosen just once as a guide and is only utilized to update another member of the population in this one-to-one interaction. The proposed OOBO's performance in optimization is evaluated with fifty-two objective functions, encompassing unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results highlight the remarkable capacity of OOBO to strike a balance between exploration and exploitation within the problem-solving space during the search process. The quality of the optimization results achieved using the proposed OOBO is evaluated by comparing them to eight well-known algorithms. The simulation findings show that OOBO outperforms the other algorithms in addressing optimization problems and can give more acceptable quasi-optimal solutions. Also, the implementation of OOBO in six engineering problems shows the effectiveness of the proposed approach in solving real-world optimization applications.

6.
Sci Rep ; 13(1): 14635, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670054

RESUMO

This paper uses enhanced turbulent flow in water-based optimization (TFWO), specifically ETFWO, to achieve optimal power flow (OPF) in electrical networks that use both solar photovoltaic (PV) units and wind turbines (WTs). ETFWO is an enhanced TFWO that alters the TFWO structure through the promotion of communication and collaboration. Individuals in the population now interact with each other more often, which makes it possible to search more accurately in the search area while ignoring local optimal solutions. Probabilistic models and real-time data on wind speed and solar irradiance are used to predict the power output of WT and PV producers. The OPF and solution methods are evaluated using the IEEE 30-bus network. By comparing ETFWO to analogical other optimization techniques applied to the same groups of constraints, control variables, and system data, we can gauge the algorithm's robustness and efficiency in solving OPF. It is shown in this paper that the proposed ETFWO algorithm can provide suitable solutions to OPF problems in electrical networks with integrated PV units and WTs in terms of energy generation costs, improved voltage profiles, emissions, and losses, compared to the traditional TFWO and other proposed algorithms in recent studies.

7.
PeerJ Comput Sci ; 9: e1431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705627

RESUMO

Many important engineering optimization problems require a strong and simple optimization algorithm to achieve the best solutions. In 2020, Rao introduced three non-parametric algorithms, known as Rao algorithms, which have garnered significant attention from researchers worldwide due to their simplicity and effectiveness in solving optimization problems. In our simulation studies, we have developed a new version of the Rao algorithm called the Fully Informed Search Algorithm (FISA), which demonstrates acceptable performance in optimizing real-world problems while maintaining the simplicity and non-parametric nature of the original algorithms. We evaluate the effectiveness of the suggested FISA approach by applying it to optimize the shifted benchmark functions, such as those provided in CEC 2005 and CEC 2014, and by using it to design mechanical system components. We compare the results of FISA to those obtained using the original RAO method. The outcomes obtained indicate the efficacy of the proposed new algorithm, FISA, in achieving optimized solutions for the aforementioned problems. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/FISA.

8.
PeerJ Comput Sci ; 9: e1497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705658

RESUMO

Expert assessments with pre-defined numerical or language terms can limit the scope of decision-making models. We propose that decision-making models can incorporate expert judgments expressed in natural language through sentiment analysis. To help make more informed choices, we present the Sentiment Analysis in Recommender Systems with Multi-person, Multi-criteria Decision Making (SAR-MCMD) method. This method compiles the opinions of several experts by analyzing their written reviews and, if applicable, their star ratings. The growth of online applications and the sheer amount of available information have made it difficult for users to decide which information or products to select from the Internet. Intelligent decision-support technologies, known as recommender systems, leverage users' preferences to suggest what they might find interesting. Recommender systems are one of the many approaches to dealing with information overload issues. These systems have traditionally relied on single-grading algorithms to predict and communicate users' opinions for observed items. To boost their predictive and recommendation abilities, multi-criteria recommender systems assign numerous ratings to various qualities of products. We created, manually annotated, and released the technique in a case study of restaurant selection using 'TripAdvisor reviews', 'TMDB 5000 movies', and an 'Amazon dataset'. In various areas, cutting-edge deep learning approaches have led to breakthrough progress. Recently, researchers have begun to focus on applying these methods to recommendation systems, and different deep learning-based recommendation models have been suggested. Due to its proficiency with sparse data in large data systems and its ability to construct complex models that characterize user performance for the recommended procedure, deep learning is a formidable tool. In this article, we introduce a model for a multi-criteria recommender system that combines the best of both deep learning and multi-criteria decision-making. According to our findings, the suggested system may give customers very accurate suggestions with a sentiment analysis accuracy of 98%. Additionally, the metrics, accuracy, precision, recall, and F1 score are where the system truly shines, much above what has been achieved in the past.

9.
PeerJ Comput Sci ; 9: e1313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346538

RESUMO

DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94.

10.
PeerJ Comput Sci ; 9: e1420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346618

RESUMO

Differential evolution (DE) belongs to the most usable optimization algorithms, presented in many improved and modern versions in recent years. Generally, the low convergence rate is the main drawback of the DE algorithm. In this article, the gray wolf optimizer (GWO) is used to accelerate the convergence rate and the final optimal results of the DE algorithm. The new resulting algorithm is called Hunting Differential Evolution (HDE). The proposed HDE algorithm deploys the convergence speed of the GWO algorithm as well as the appropriate searching capability of the DE algorithm. Furthermore, by adjusting the crossover rate and mutation probability parameters, this algorithm can be adjusted to pay closer attention to the strengths of each of these two algorithms. The HDE/current-to-rand/1 performed the best on CEC-2019 functions compared to the other eight variants of HDE. HDE/current-to-best/1 is also chosen as having superior performance to other proposed HDE compared to seven improved algorithms on CEC-2014 functions, outperforming them in 15 test functions. Furthermore, jHDE performs well by improving in 17 functions, compared with jDE on these functions. The simulations indicate that the proposed HDE algorithm can provide reliable outcomes in finding the optimal solutions with a rapid convergence rate and avoiding the local minimum compared to the original DE algorithm.

11.
Sci Rep ; 13(1): 10312, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365283

RESUMO

This article's innovation and novelty are introducing a new metaheuristic method called mother optimization algorithm (MOA) that mimics the human interaction between a mother and her children. The real inspiration of MOA is to simulate the mother's care of children in three phases education, advice, and upbringing. The mathematical model of MOA used in the search process and exploration is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, and the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA's high ability in local search and exploitation. The findings of optimization of high-dimensional multimodal functions indicate the high ability of MOA in global search and exploration. The findings of optimization of fixed-dimension multi-model functions and the CEC 2017 test suite show that MOA with a high ability to balance exploration and exploitation effectively supports the search process and can generate appropriate solutions for optimization problems. The outcomes quality obtained from MOA has been compared with the performance of 12 often-used metaheuristic algorithms. Upon analysis and comparison of the simulation results, it was found that the proposed MOA outperforms competing algorithms with superior and significantly more competitive performance. Precisely, the proposed MOA delivers better results in most objective functions. Furthermore, the application of MOA on four engineering design problems demonstrates the efficacy of the proposed approach in solving real-world optimization problems. The findings of the statistical analysis from the Wilcoxon signed-rank test show that MOA has a significant statistical superiority compared to the twelve well-known metaheuristic algorithms in managing the optimization problems studied in this paper.

12.
Sci Rep ; 13(1): 8775, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258630

RESUMO

This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .

13.
Biomimetics (Basel) ; 8(2)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092401

RESUMO

This paper presents a new evolutionary-based approach called a Subtraction-Average-Based Optimizer (SABO) for solving optimization problems. The fundamental inspiration of the proposed SABO is to use the subtraction average of searcher agents to update the position of population members in the search space. The different steps of the SABO's implementation are described and then mathematically modeled for optimization tasks. The performance of the proposed SABO approach is tested for the optimization of fifty-two standard benchmark functions, consisting of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types, and the CEC 2017 test suite. The optimization results show that the proposed SABO approach effectively solves the optimization problems by balancing the exploration and exploitation in the search process of the problem-solving space. The results of the SABO are compared with the performance of twelve well-known metaheuristic algorithms. The analysis of the simulation results shows that the proposed SABO approach provides superior results for most of the benchmark functions. Furthermore, it provides a much more competitive and outstanding performance than its competitor algorithms. Additionally, the proposed approach is implemented for four engineering design problems to evaluate the SABO in handling optimization tasks for real-world applications. The optimization results show that the proposed SABO approach can solve for real-world applications and provides more optimal designs than its competitor algorithms.

14.
Biomimetics (Basel) ; 8(1)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975351

RESUMO

A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO's mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.

15.
Biomimetics (Basel) ; 7(4)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36412732

RESUMO

This article introduces a new metaheuristic algorithm called the Serval Optimization Algorithm (SOA), which imitates the natural behavior of serval in nature. The fundamental inspiration of SOA is the serval's hunting strategy, which attacks the selected prey and then hunts the prey in a chasing process. The steps of SOA implementation in two phases of exploration and exploitation are mathematically modeled. The capability of SOA in solving optimization problems is challenged in the optimization of thirty-nine standard benchmark functions from the CEC 2017 test suite and CEC 2019 test suite. The proposed SOA approach is compared with the performance of twelve well-known metaheuristic algorithms to evaluate further. The optimization results show that the proposed SOA approach, due to the appropriate balancing exploration and exploitation, is provided better solutions for most of the mentioned benchmark functions and has superior performance compared to competing algorithms. SOA implementation on the CEC 2011 test suite and four engineering design challenges shows the high efficiency of the proposed approach in handling real-world optimization applications.

16.
PeerJ Comput Sci ; 8: e1086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262154

RESUMO

Recently, deepfake technology has become a popularly used technique for swapping faces in images or videos that create forged data to mislead society. Detecting the originality of the video is a critical process due to the negative pattern of the image. In the detection of forged images or videos, various image processing techniques were implemented. Existing methods are ineffective in detecting new threats or false images. This article has proposed You Only Look Once-Local Binary Pattern Histogram (YOLO-LBPH) to detect fake videos. YOLO is used to detect the face in an image or a frame of a video. The spatial features are extracted from the face image using a EfficientNet-B5 method. Spatial feature extractions are fed as input in the Local Binary Pattern Histogram to extract temporal features. The proposed YOLO-LBPH is implemented using the large scale deepfake forensics (DF) dataset known as CelebDF-FaceForensics++(c23), which is a combination of FaceForensics++(c23) and Celeb-DF. As a result, the precision score is 86.88% in the CelebDF-FaceForensics++(c23) dataset, 88.9% in the DFFD dataset, 91.35% in the CASIA-WebFace data. Similarly, the recall is 92.45% in the Celeb-DF-Face Forensics ++(c23) dataset, 93.76% in the DFFD dataset, and 94.35% in the CASIA-Web Face dataset.

17.
PeerJ Comput Sci ; 8: e1040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875649

RESUMO

In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches.

18.
Sci Rep ; 12(1): 9924, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705720

RESUMO

In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.


Assuntos
Algoritmos , Condução de Veículo , Simulação por Computador , Humanos , Aprendizagem , Resolução de Problemas
19.
PeerJ Comput Sci ; 8: e953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721408

RESUMO

Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. With the recent advancement of generative adversarial networks (GANs) in deep learning models, DF has become an essential part of social media. To detect forged video and images, numerous methods have been developed, and those methods are focused on a particular domain and obsolete in the case of new attacks/threats. Hence, a novel method needs to be developed to tackle new attacks. The method introduced in this article can detect various types of spoofs of images and videos that are computationally generated using deep learning models, such as variants of long short-term memory and convolutional neural networks. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The proposed DF detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and WildDeepfake. The evaluated results show the effectiveness of the proposed method.

20.
PeerJ Comput Sci ; 8: e976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634108

RESUMO

Stochastic-based optimization algorithms are effective approaches to addressing optimization challenges. In this article, a new optimization algorithm called the Election-Based Optimization Algorithm (EBOA) was developed that mimics the voting process to select the leader. The fundamental inspiration of EBOA was the voting process, the selection of the leader, and the impact of the public awareness level on the selection of the leader. The EBOA population is guided by the search space under the guidance of the elected leader. EBOA's process is mathematically modeled in two phases: exploration and exploitation. The efficiency of EBOA has been investigated in solving thirty-three objective functions of a variety of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and CEC 2019 types. The implementation results of the EBOA on the objective functions show its high exploration ability in global search, its exploitation ability in local search, as well as the ability to strike the proper balance between global search and local search, which has led to the effective efficiency of the proposed EBOA approach in optimizing and providing appropriate solutions. Our analysis shows that EBOA provides an appropriate balance between exploration and exploitation and, therefore, has better and more competitive performance than the ten other algorithms to which it was compared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA