Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultramicroscopy ; 253: 113809, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544269

RESUMO

A new, complementary technique based on Photo Emission Electron Microscopy (PEEM) is demonstrated. In contrast to PEEM, the sample is placed on a transparent substrate and is illuminated from the back side while electrons are collected from the other (front) side. In this paper, the working principle of this technique, coined back-illuminated PEEM (BIPEEM), is described. In BIPEEM, the electron intensity is strongly thickness-dependent. This dependence can be described by a simple model which contains the optical attenuation length and the electron mean free path. Electrons forming an image in BIPEEM hence carry information of the inner part of the sample, as well as of the surface, as we demonstrate experimentally.

2.
J Phys Chem C Nanomater Interfaces ; 125(47): 26150-26156, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34887975

RESUMO

Crystalline films of pentacene molecules, two to four monolayers in thickness, are grown via in situ sublimation on silicon substrates in the ultrahigh vacuum chamber of a low-energy electron microscope. It is observed that the diffraction pattern of the pentacene layers fades upon irradiation with low-energy electrons. The damage cross section is found to increase by more than an order of magnitude for electron energies from 0 to 10 eV and by another order of magnitude from 10 to 40 eV. Close to 0 eV, damage is virtually nil. Creation of chemically reactive atomic centers after electron attachment or impact ionization is thought to trigger chemical reactions between neighboring molecules that gradually transform the layer into a disordered carbon nanomembrane. Additionally, diminishing spectroscopic features related to the unoccupied band structure of the layers, accompanied by loss of definition in real-space images, and an increase in the background intensity of diffraction images during irradiation point to chemical changes and formation of a disordered layer.

3.
Ultramicroscopy ; 213: 112913, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32389485

RESUMO

For many complex materials systems, low-energy electron microscopy (LEEM) offers detailed insights into morphology and crystallography by naturally combining real-space and reciprocal-space information. Its unique strength, however, is that all measurements can easily be performed energy-dependently. Consequently, one should treat LEEM measurements as multi-dimensional, spectroscopic datasets rather than as images to fully harvest this potential. Here we describe a measurement and data analysis approach to obtain such quantitative spectroscopic LEEM datasets with high lateral resolution. The employed detector correction and adjustment techniques enable measurement of true reflectivity values over four orders of magnitudes of intensity. Moreover, we show a drift correction algorithm, tailored for LEEM datasets with inverting contrast, that yields sub-pixel accuracy without special computational demands. Finally, we apply dimension reduction techniques to summarize the key spectroscopic features of datasets with hundreds of images into two single images that can easily be presented and interpreted intuitively. We use cluster analysis to automatically identify different materials within the field of view and to calculate average spectra per material. We demonstrate these methods by analyzing bright-field and dark-field datasets of few-layer graphene grown on silicon carbide and provide a high-performance Python implementation.

4.
Phys Rev Lett ; 123(8): 086802, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491219

RESUMO

In contrast to the in-plane transport electron mean-free path in graphene, the transverse mean-free path has received little attention and is often assumed to follow the "universal" mean-free path (MFP) curve broadly adopted in surface and interface science. Here we directly measure transverse electron scattering through graphene from 0 to 25 eV above the vacuum level both in reflection using low energy electron microscopy and in transmission using electronvolt transmission electron microscopy. From these data, we obtain quantitative MFPs for both elastic and inelastic scattering. Even at the lowest energies, the total MFP is just a few graphene layers and the elastic MFP oscillates with graphene layer number, both refuting the universal curve. A full theoretical calculation taking the graphene band structure into consideration agrees well with experiment, while the key experimental results are reproduced even by a simple optical toy model.

5.
Ultramicroscopy ; 199: 46-49, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772717

RESUMO

Measurement of chromatic aberration in a Low Energy Electron Microscope (LEEM) or Photo Electron Emission Microscope (PEEM) is necessary for quantitative image interpretation, and for accurate correction of chromatic aberration in an aberration-corrected instrument. While methods have been developed for measuring the spherical aberration coefficient, C3, measuring the chromatic aberration coefficient, Cc, remains a more difficult task. Here a novel method is introduced to simplify such measurements. The viability and accuracy is demonstrated using detailed electron-optical ray-tracing calculations. Experimental results show that the method is easily reduced to practice.

6.
Phys Rev Lett ; 120(20): 208003, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864345

RESUMO

Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers ΔF∼γA_{d}≫k_{B}T induced by high interfacial tension (γ∼10^{-2} N/m) and nanoscale surface defects with characteristic areas A_{d}≃10-30 nm^{2}. For the studied water-water interface with ultralow surface tension (γ∼10^{-4} N/m) we are able to characterize the entire adsorption process and observe equilibrium states prescribed by a single equilibrium contact angle independent of the particle size. Notably, we observe crossovers from fast initial dynamics to slower kinetic regimes analytically predicted for large surface defects (A_{d}≃500 nm^{2}). Moreover, particle trajectories reveal a position-independent damping coefficient that is unexpected given the large viscosity contrast between phases. These observations are attributed to the remarkably diffuse nature of the water-water interface and the adsorption and entanglement of polymer chains in the semidilute solutions. This work offers some first insights on the adsorption dynamics or kinetics of microparticles at water-water interfaces in biocolloidal systems.

7.
Carbohydr Polym ; 183: 183-191, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352873

RESUMO

Acacia gum solution was employed as a carrier for electrospray-assisted drying of probiotic cells. To optimize the process, effect of gum concentration, thermal sterilization as a prerequisite for microbial studies, and surfactant addition on physical properties of feed solution was investigated. Increasing gum concentration from 20 to 40 wt.% led to a viscosity increase, whilst surface tension did not change meaningfully and electrical conductivity declined after an increasing trend up to 30 wt.% of the gum. Thermal sterilization increased the viscosity without any significant effect on the conductivity and surface tension. Surfactant addition reduced the surface tension and conductivity but the viscosity increased. Highly uniform particles were formed by electrospray-assisted drying of autoclaved 35 wt.% acacia gum solution containing 1 wt.% Tween 80. Thermal sterilization and surfactant addition improved electrospray-ability of acacia gum solution. Bacterial count showed that more than 96 percent of probiotic cells passed the process viably.


Assuntos
Dessecação/métodos , Goma Arábica/química , Microesferas , Probióticos , Temperatura Alta , Pressão , Tensão Superficial , Tensoativos/química , Viscosidade
8.
J Phys Chem B ; 122(13): 3354-3362, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29257868

RESUMO

Aqueous two-phase systems provide oil-free alternatives in the formulation of emulsions in food and other applications. Theoretical interpretation of measurements on such systems, however, is complicated by the high polydispersity of the polymers. Here, phase diagrams of demixing and interfacial tensions are determined for aqueous solutions of two large polymers present in a mass ratio of 1:1, dextran (70 kDa) and nongelling gelatin (100 kDa), with or without further addition of smaller dextran molecules (20 kDa). Both in experiments and in calculations from Scheutjens-Fleer self-consistent field lattice theory, we find that small polymers decrease the interfacial tension at equal tie-line length in the phase diagram. After identifying the partial contributions of all chemical components to the interfacial tension, we conclude that excess water at the interface is partially displaced by small polymer molecules. An interpretation in terms of the Gibbs adsorption equation provides an instructive way to describe effects of polydispersity on the interfacial tension of demixed polymer solutions.

9.
Ultramicroscopy ; 183: 2-7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28256280

RESUMO

Accurately measuring defocus in cathode lens instruments (Low Energy Electron Microscopy - LEEM, and Photo Electron Emission Microscopy - PEEM) is a pre-requisite for quantitative image analysis using Fourier Optics (FO) or Contrast Transfer Function (CTF) image simulations. In particular, one must establish a quantitative relation between lens excitation and image defocus. One way to accomplish this is the Real-Space Microspot LEED method, making use of the accurately known angles of diffracted electron beams, and the defocus-dependent shifts of their corresponding real-space images. However, this only works if a sufficiently large number of diffracted beams is available for the sample under investigation. An alternative is to shift the sample along the optical axis by a known distance, and measure the change in objective lens excitation required to re-focus the image. We analytically derive the relation between sample shift and defocus, and apply our results to the measurement and analysis of achromats in an aberration-corrected LEEM instrument.

10.
Soft Matter ; 13(7): 1326-1334, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28074195

RESUMO

The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles are known to adsorb spontaneously. Particle hardness, however, may also affect foam and emulsion stability. The high compliance of soft particles may compromise their ability to withstand the lateral compression associated with disproportionation. Hence, particles which can spontaneously adsorb onto fluid interfaces, and yet depict low compliance may be ideal as interfacial stabilizers. In the present work, we prepared core-shell particles comprising a hard, polystyrene core and a soft poly(N-isopropylacrylamide) based shell. We found that such core-shell particles adsorb spontaneously onto various fluid interfaces. The absence of a pronounced energy barrier for interfacial adsorption allowed the facile preparation of particle-stabilized bubbles as well as emulsion droplets. For bubbles, the stability was better than that of bubbles stabilized by entirely soft particles, but disproportionation was not stopped completely. Emulsion droplets, in contrast, showed excellent stability against both coalescence and disproportionation. Lateral compression of core-shell particles due to disproportionation was clearly limited by the presence of the polystyrene core, leading to long-lasting stability. For emulsions, we even observed non-spherical droplets, indicating a negligible Laplace pressure. Our results indicate that core-shell particles comprising a hard core and a soft shell combine the advantageous properties of hard and soft particles, namely spontaneous adsorption and limited compliance, and can therefore be superior materials for the preparation of particle-stabilized dispersions.

11.
Phys Rev Lett ; 119(26): 266803, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328718

RESUMO

The effects of exposure to ionizing radiation are central in many areas of science and technology, including medicine and biology. Absorption of UV and soft-x-ray photons releases photoelectrons, followed by a cascade of lower energy secondary electrons with energies down to 0 eV. While these low energy electrons give rise to most chemical and physical changes, their interactions with soft materials are not well studied or understood. Here, we use a low energy electron microscope to expose thin organic resist films to electrons in the range 0-50 eV, and to analyze the energy distribution of electrons returned to the vacuum. We observe surface charging that depends strongly and nonlinearly on electron energy and electron beam current, abruptly switching sign during exposure. Charging can even be sufficiently severe to induce dielectric breakdown across the film. We provide a simple but comprehensive theoretical description of these phenomena, identifying the presence of a cusp catastrophe to explain the sudden switching phenomena seen in the experiments. Surprisingly, the films undergo changes at all incident electron energies, starting at ∼0 eV.

12.
Phys Chem Chem Phys ; 18(45): 30931-30939, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27819102

RESUMO

Polyelectrolytes can show strong adsorption at water-water interfaces formed by phase separation of two polymers in aqueous solution. We demonstrate this for a model system consisting of neutral polymer A and weakly positively charged polymer B. When polyelectrolyte is added with similar chemical composition as polymer A, but charge of opposite sign as polymer B, interfacial accumulation is observed. We hypothesize this accumulation to be complexation at the water-water interface. This adsorption surprisingly persists even at high salt concentrations and has only a limited effect on the interfacial tension. Complexation of polyelectrolytes at water-water interfaces may provide a new path towards the stabilization of water-in-water emulsions.

13.
Sci Rep ; 5: 13604, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337713

RESUMO

Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.

14.
Phys Rev Lett ; 115(7): 078303, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317748

RESUMO

Electric charge at the water-water interface of demixed solutions of neutral polymer and polyelectrolyte decreases the already ultralow interfacial tension. This is demonstrated in experiments on aqueous mixtures of dextran (neutral) and nongelling fish gelatin (charged). Upon phase separation, electric charge and a potential difference develop spontaneously at the interface, decreasing the interfacial tension purely electrostatically in a way that can be accounted for quantitatively by Poisson-Boltzmann theory. Interfacial tension is a key property when it comes to manipulating the water-water interface, for instance to create novel water-in-water emulsions.

15.
Ultramicroscopy ; 159 Pt 3: 497-502, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25825026

RESUMO

Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy - PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment.

16.
Annu Rev Food Sci Technol ; 6: 371-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884282

RESUMO

The sensory perception of texture is an important contributor of our general appreciation of foods. Food texture is mainly described in terms of mouthfeel and afterfeel attributes. The role of oral processing in the perception of texture and the role of microstructure therein have been reviewed regularly over recent years (Chen & Engelen 2012, Foegeding et al. 2011, Stieger & van de Velde 2013) and are not, therefore, addressed in this review. The scope of this review relates to the molecules that underlay the texture of foods. Protein, carbohydrate, and fat are the major structuring components in foods. In this review we focus on the physical interactions between proteins and polysaccharides that form the basis for the microstructure and texture of these foods. In general, food products are classified in four categories by their sensory and rheological properties: liquids, semisolids, soft solids, and hard solids (van Vliet et al. 2009). These four categories provide a useful classification framework, although they are not precisely defined by specific rheological properties. The current review focuses on semisolid and soft-solid foods.


Assuntos
Polissacarídeos/química , Proteínas/química , Biopolímeros , Alimentos , Propriedades de Superfície
17.
Soft Matter ; 11(7): 1326-34, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25571985

RESUMO

Stabilization of gas bubbles in water by applying solid particles is a promising technique to ensure long-term stability of the dispersion against coarsening. However, the production of large quantities of particle stabilized bubbles is challenging. The delivery of particles to the interface must occur rapidly compared to the typical time scale of coarsening during production. Furthermore, the production route must be able to overcome the energy barriers for interfacial adsorption of particles. Here we demonstrate that ultrasound can be applied to agitate a colloidal dispersion and supply sufficient energy to ensure particle adsorption onto the air-water interface. With this technique we are able to produce micron-sized bubbles, solely stabilized by particles. The interface of these bubbles is characterized by a colloidal shell, a monolayer of particles which adopt a hexagonal packing. The particles are anchored to the interface owing to partial wetting and experience lateral compression due to bubble shrinkage. The combination of both effects stops coarsening once the interface is jammed with particles. As a result, stable bubbles are formed. Individual particles can desorb from the interface upon surfactant addition, though. The latter fact confirms that the particle shell is not covalently linked due to thermal sintering, but is solely held together by capillary interaction. In summary, we show that our ultrasound approach allows for the straightforward creation of micron-sized particle stabilized bubbles with high stability towards coarsening.

18.
ACS Macro Lett ; 4(9): 965-968, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596465

RESUMO

Ultrathin plate-like colloidal particles are effective candidates for Pickering stabilization of water-in-water emulsions, a stabilization that is complicated by the thickness and ultralow tension of the water-water interface. Plate-like particles have the advantage of blocking much of the interface while simultaneously having a low mass. Additionally, the amount of blocked interface is practically independent of the equilibrium contact angle θ at which the water-water interface contacts the nanoplates. As a result, the adsorption of nanoplates is stronger than for spheres with the same maximal cross section, except if θ = 90°.

19.
Ultramicroscopy ; 151: 191-198, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25458190

RESUMO

In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach.

20.
J Phys Condens Matter ; 26(46): 464101, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25347040

RESUMO

The properties of interfaces are discussed between coexisting phases in phase separated aqueous solutions of polymers. Such interfaces are found in food, where protein-rich and polysaccharide-rich phases coexist. Three aspects of such interfaces are highlighted: the interfacial profiles in terms of polymer composition and polymer concentration, the curvature dependence of the interfacial tension, and the interfacial potential, arising when one of the separated polymers is charged. In all three cases a theoretical approach and methods for experimental verification are presented.


Assuntos
Polímeros/química , Água/química , Modelos Moleculares , Propriedades de Superfície , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA