Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Prostate ; 84(11): 1033-1046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708958

RESUMO

BACKGROUND: Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR+) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC. METHODS: PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection. The progression of metastases was monitored by bioluminescent imaging. Histological phenotypes of metastases were characterized by immunohistochemistry and immunofluorescence staining. Castration responses were further investigated in two AR-positive models. RESULTS: Our PDX-derived metastasis (PDM) model collection comprises three AR+ adenocarcinomas (ARPC) and one AR- neuroendocrine carcinoma (NEPC). All ARPC models developed bone metastases with either an osteoblastic, osteolytic, or mixed phenotype, while the NEPC model mainly developed brain metastasis. Different mechanisms of castration resistance were observed in two AR+ PDM models with distinct genotypes, such as combined loss of TP53 and RB1 in one model and expression of AR splice variant 7 (AR-V7) expression in another model. Intriguingly, the castration-resistant tumors displayed inter- and intra-tumor as well as organ-specific heterogeneity in lineage specification. CONCLUSION: Genetically diverse PDM models provide a clinically relevant system for biomarker identification and personalized medicine in metastatic castration-resistant prostate cancer.


Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Animais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Humanos , Camundongos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/genética
2.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370835

RESUMO

Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor pathologic responses after treatment. In this study, we report comprehensive and integrative gene expression profiling of 37 locally advanced prostate tumors prior to six months of androgen deprivation therapy (ADT) plus the androgen receptor (AR) inhibitor enzalutamide prior to radical prostatectomy. A robust transcriptional program associated with HER2 activity was positively associated with poor outcome and opposed AR activity, even after adjusting for common genomic alterations in prostate cancer including PTEN loss and expression of the TMPRSS2:ERG fusion. Patients experiencing exceptional pathologic responses demonstrated lower levels of HER2 and phospho-HER2 by immunohistochemistry of biopsy tissues. The inverse correlation of AR and HER2 activity was found to be a universal feature of all aggressive prostate tumors, validated by transcriptional profiling an external cohort of 121 patients and immunostaining of tumors from 84 additional patients. Importantly, the AR activity-low, HER2 activity-high cells that resist ADT are a pre-existing subset of cells that can be targeted by HER2 inhibition alone or in combination with enzalutamide. In summary, we show that prostate tumors adopt an AR activity-low prior to antiandrogen exposure that can be exploited by treatment with HER2 inhibitors.

3.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205576

RESUMO

Background: Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies. Methods: Twenty-nine individuals with intermediate or high risk prostate cancer were prospectively recruited to a clinical trial designed to profile the molecular and imaging features of prostate cancer in patients undergoing EBRT and ADT. Whole transcriptome cDNA microarray and whole exome sequencing were performed on pretreatment targeted biopsy of prostate tumors (n=60). All patients underwent pretreatment and 6-month post EBRT multiparametric MRI (mpMRI), and were followed with serial PSA to assess presence or absence of BCR. Genes differentially expressed in the tumor of patients with and without BCR were investigated using pathways analysis tools and were similarly explored in alternative datasets. Differential gene expression and predicted pathway activation were evaluated in relation to tumor response on mpMRI and tumor genomic profile. A novel TGF-ß gene signature was developed in the discovery dataset and applied to a validation dataset. Findings: Baseline MRI lesion volume and PTEN/TP53 status in prostate tumor biopsies correlated with the activation state of TGF-ß signaling measured using pathway analysis. All three measures correlated with the risk of BCR after definitive RT. A prostate cancer-specific TGF-ß signature discriminated between patients that experienced BCR vs. those that did not. The signature retained prognostic utility in an independent cohort. Interpretation: TGF-ß activity is a dominant feature of intermediate-to-unfavorable risk prostate tumors prone to biochemical failure after EBRT with ADT. TGF-ß activity may serve as a prognostic biomarker independent of existing risk factors and clinical decision-making criteria. Funding: This research was supported by the Prostate Cancer Foundation, the Department of Defense Congressionally Directed Medical Research Program, National Cancer Institute, and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

4.
Discov Oncol ; 13(1): 97, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181613

RESUMO

BACKGROUND: The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS: Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS: Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.

5.
Clin Cancer Res ; 28(16): 3509-3525, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35695870

RESUMO

PURPOSE: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Antagonistas de Androgênios/uso terapêutico , Biomarcadores , Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
6.
J Urol ; 208(1): 90-99, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35227084

RESUMO

PURPOSE: Neoadjuvant intense androgen deprivation therapy (iADT) can exert a wide range of histological responses, which in turn are reflected in the final prostatectomy specimen. Accurate identification and measurement of residual tumor volumes are critical for tracking and stratifying patient outcomes. MATERIALS AND METHODS: The goal of this current study was to evaluate the ability of antibodies against prostate-specific membrane antigen (PSMA) to specifically detect residual tumor in a cohort of 35 patients treated with iADT plus enzalutamide for 6 months prior to radical prostatectomy. RESULTS: Residual carcinoma was detected in 31 patients, and PSMA reacted positively with tumor in all cases. PSMA staining was 96% sensitive for tumor, with approximately 82% of benign regions showing no reactivity. By contrast, PSMA positively reacted with 72% of benign regions in a control cohort of 37 untreated cases, resulting in 28% specificity for tumor. PSMA further identified highly dedifferentiated prostate carcinomas including tumors with evidence of neuroendocrine differentiation. CONCLUSIONS: We propose that anti-PSMA immunostaining be a standardized marker for identifying residual cancer in the setting of iADT.


Assuntos
Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Androgênios , Humanos , Masculino , Terapia Neoadjuvante , Neoplasia Residual , Próstata/patologia , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico
7.
Nat Cancer ; 2(4): 444-456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33899001

RESUMO

Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.


Assuntos
Receptor de Morte Celular Programada 1 , Neoplasias da Próstata , Linfócitos T CD8-Positivos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Interferons/farmacologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , RNA de Cadeia Dupla
8.
Eur Urol ; 80(6): 746-757, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33785256

RESUMO

BACKGROUND: Patients diagnosed with high risk localized prostate cancer have variable outcomes following surgery. Trials of intense neoadjuvant androgen deprivation therapy (NADT) have shown lower rates of recurrence among patients with minimal residual disease after treatment. The molecular features that distinguish exceptional responders from poor responders are not known. OBJECTIVE: To identify genomic and histologic features associated with treatment resistance at baseline. DESIGN, SETTING, AND PARTICIPANTS: Targeted biopsies were obtained from 37 men with intermediate- to high-risk prostate cancer before receiving 6 mo of ADT plus enzalutamide. Biopsy tissues were used for whole-exome sequencing and immunohistochemistry (IHC). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We assessed the relationship of molecular features with final pathologic response using a cutpoint of 0.05 cm3 for residual cancer burden to compare exceptional responders to incomplete and nonresponders. We assessed intratumoral heterogeneity at the tissue and genomic level, and compared the volume of residual disease to the Shannon diversity index for each tumor. We generated multivariate models of resistance based on three molecular features and one histologic feature, with and without multiparametric magnetic resonance imaging estimates of baseline tumor volume. RESULTS AND LIMITATIONS: Loss of chromosome 10q (containing PTEN) and alterations to TP53 were predictive of poor response, as were the expression of nuclear ERG on IHC and the presence of intraductal carcinoma of the prostate. Patients with incompletely and nonresponding tumors harbored greater tumor diversity as estimated via phylogenetic tree reconstruction from DNA sequencing and analysis of IHC staining. Our four-factor binary model (area under the receiver operating characteristic curve [AUC] 0.89) to predict poor response correlated with greater diversity in our cohort and a validation cohort of 57 Gleason score 8-10 prostate cancers from The Cancer Genome Atlas. When baseline tumor volume was added to the model, it distinguished poor response to NADT with an AUC of 0.98. Prospective use of this model requires further retrospective validation with biopsies from additional trials. CONCLUSIONS: A subset of prostate cancers exhibit greater histologic and genomic diversity at the time of diagnosis, and these localized tumors have greater fitness to resist therapy. PATIENT SUMMARY: Some prostate cancer tumors do not respond well to a hormonal treatment called androgen deprivation therapy (ADT). We used tumor volume and four other parameters to develop a model to identify tumors that will not respond well to ADT. Treatments other than ADT should be considered for these patients.


Assuntos
Antagonistas de Androgênios , Neoplasias da Próstata , Antagonistas de Androgênios/efeitos adversos , Androgênios , Humanos , Masculino , Filogenia , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Estudos Retrospectivos
10.
Oncogene ; 39(34): 5663-5674, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681068

RESUMO

Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally, we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1 expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1. Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.


Assuntos
Proteínas de Homeodomínio/genética , Proteína Meis1/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Proteína Meis1/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Androgênicos/metabolismo
11.
Nat Commun ; 11(1): 837, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054861

RESUMO

Localized prostate cancers are genetically variable and frequently multifocal, comprising spatially distinct regions with multiple independently-evolving clones. To date there is no understanding of whether this variability can influence management decisions for patients with prostate tumors. Here, we present a single case from a clinical trial of neoadjuvant intense androgen deprivation therapy. A patient was diagnosed with a large semi-contiguous tumor by imaging, histologically composed of a large Gleason score 9 tumor with an adjacent Gleason score 7 nodule. DNA sequencing demonstrates these are two independent tumors, as only the Gleason 9 tumor harbors single-copy losses of PTEN and TP53. The PTEN/TP53-deficient tumor demonstrates treatment resistance, selecting for subclones with mutations to the remaining copies of PTEN and TP53, while the Gleason 7 PTEN-intact tumor is almost entirely ablated. These findings indicate that spatiogenetic variability is a major confounder for personalized treatment of patients with prostate cancer.


Assuntos
Neoplasias Primárias Múltiplas/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Idoso , Antagonistas de Androgênios/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Humanos , Masculino , Mutação , Terapia Neoadjuvante , Gradação de Tumores , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-31528835

RESUMO

PURPOSE: Despite decreased screening-based detection of clinically insignificant tumors, most diagnosed prostate cancers are still indolent, indicating a need for better strategies for detection of clinically significant disease before treatment. We hypothesized that patients with detectable circulating tumor DNA (ctDNA) were more likely to harbor aggressive disease. METHODS: We applied ultra-low-pass whole-genome sequencing to profile cell-free DNA from 112 patients diagnosed with localized prostate cancer and performed targeted resequencing of plasma DNA for somatic mutations previously identified in matched solid tumor in nine cases. We also performed similar analyses of data from patients with metastatic prostate cancer. RESULTS: In all cases of localized prostate cancer, even in clinically high-risk patients who subsequently had recurrent disease, ultra-low-pass whole-genome sequencing and targeted resequencing did not detect ctDNA in plasma acquired before surgery or before recurrence. In contrast, using both approaches, ctDNA was detected in patients with metastatic prostate cancer. CONCLUSION: Our findings demonstrate clear differences between localized and advanced prostate cancer with respect to the dissemination and detectability of ctDNA. Because allele-specific alterations in ctDNA are below the threshold for detection in localized prostate cancer, other approaches to identify cell-free nucleic acids of tumor origin may demonstrate better specificity for aggressive disease.

13.
Cell Cycle ; 5(19): 2253-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16969106

RESUMO

Previous studies have identified several proteins that associate with microtubules and the dynein motor complex including p53, the glucocorticoid and the vitamin D receptors, and the APC (adenomatous polyposis coli) protein; but neither the residues important for this interaction nor the physical state of the proteins involved have been clarified. We observed in SN12C cells harboring a mutant p53 truncated at amino acid 336, impaired nuclear localization and impaired association with dynein. This finding was confirmed and extended by examining a series of truncated p53 proteins that identified residues 336 to 348 as crucial for association with dynein and nuclear transport. Point mutations identified the importance of residues involved in p53 oligomerization in this process, establishing a p53 oligomer as the cargo for dynein transport. The association of cytosolic p53 oligomers with dynein occurs independent of microtubules indicating that following this association, the p53/dynein complex then associates with microtubules and is transported to the peri-nuclear region. These studies suggest that mutations or modifications that affect p53 oligomerization not only interfere with DNA binding but also with its intracellular distribution. They also highlight the importance of an intact microtubule network in the trafficking of crucial cellular proteins.


Assuntos
Núcleo Celular/metabolismo , Dineínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Proteínas de Ligação a DNA , Dimerização , Humanos , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Mutação Puntual , Ligação Proteica , Transporte Proteico , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA