Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826396

RESUMO

Recent data highlight genomic events driving antigen escape as a recurring cause of chimeric antigen receptor T-cell (CAR-T) and bispecific T-cell engager (TCE) resistance in multiple myeloma (MM). Yet, it remains unclear if these events, leading to clonal dominance at progression, result from acquisition under treatment selection or selection of pre-existing undetectable clones. This differentiation gains importance as these immunotherapies progress to earlier lines of treatment, prompting the need for innovative diagnostic testing to detect these events early on. By reconstructing phylogenetic trees and exploring chemotherapy mutational signatures as temporal barcodes in 11 relapsed refractory MM patients with available whole genome sequencing data before and after CART/TCE treatment, we demonstrated that somatic antigen escape mechanisms for BCMA- and GPRC5D-targeting therapies are acquired post-diagnosis, likely during CART/TCE treatment. Longitudinal tracking of these mutations using digital PCR in 4 patients consistently showed that genomic events promoting antigen escape were not detectable during the initial months of therapy but began to emerge nearly 1 year post therapy initiation. This finding reduces the necessity for a diagnostic panel to identify these events before CART/TCE. Instead, it underscores the importance of surveillance and identifying patients at higher risk of acquiring these events.

3.
Haematologica ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38497167

RESUMO

Hemoglobinopathies including thalassemias are among the most frequent genetic disorders worldwide. Primarily, these entities result from germline variants in the globin gene clusters and their cis-acting regulatory elements, and thus the WHO classifies thalassemias as inherited diseases. Non-inherited disorders of globin chain synthesis mimicking the phenotype of thalassemias have also been described and are referred to as acquired thalassemias. These forms mainly affect the alpha-globin genes and are observed at much lower frequencies...

4.
Blood ; 143(12): 1139-1156, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38064663

RESUMO

ABSTRACT: The World Health Organization (WHO) classification of hematolymphoid tumors and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of chronic myelomonocytic leukemia (CMML). To assess its qualitative and quantitative implications for patient care, we started with 3311 established CMML cases (according to WHO 2017 criteria) and included 2130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both 2022 classification systems, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as myelodysplastic syndrome (MDS) according to the WHO 2017 classification. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, because of different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD and myeloproliferative CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Humanos , Consenso , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Leucemia Mielomonocítica Crônica/diagnóstico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/patologia , Leucocitose , Organização Mundial da Saúde , Prognóstico , Compostos Orgânicos
6.
Commun Biol ; 6(1): 1299, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129580

RESUMO

The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Imunoterapia/métodos , Linfócitos T , Anticorpos Monoclonais/uso terapêutico , Receptores de Morte Celular , Proteína de Domínio de Morte Associada a Fas
7.
Nat Med ; 29(9): 2295-2306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653344

RESUMO

B cell maturation antigen (BCMA) target loss is considered to be a rare event that mediates multiple myeloma (MM) resistance to anti-BCMA chimeric antigen receptor T cell (CAR T) or bispecific T cell engager (TCE) therapies. Emerging data report that downregulation of G-protein-coupled receptor family C group 5 member D (GPRC5D) protein often occurs at relapse after anti-GPRC5D CAR T therapy. To examine the tumor-intrinsic factors that promote MM antigen escape, we performed combined bulk and single-cell whole-genome sequencing and copy number variation analysis of 30 patients treated with anti-BCMA and/or anti-GPRC5D CAR T/TCE therapy. In two cases, MM relapse post-TCE/CAR T therapy was driven by BCMA-negative clones harboring focal biallelic deletions at the TNFRSF17 locus at relapse or by selective expansion of pre-existing subclones with biallelic TNFRSF17 loss. In another five cases of relapse, newly detected, nontruncating, missense mutations or in-frame deletions in the extracellular domain of BCMA negated the efficacies of anti-BCMA TCE therapies, despite detectable surface BCMA protein expression. In the present study, we also report four cases of MM relapse with biallelic mutations of GPRC5D after anti-GPRC5D TCE therapy, including two cases with convergent evolution where multiple subclones lost GPRC5D through somatic events. Immunoselection of BCMA- or GPRC5D-negative or mutant clones is an important tumor-intrinsic driver of relapse post-targeted therapies. Mutational events on BCMA confer distinct sensitivities toward different anti-BCMA therapies, underscoring the importance of considering the tumor antigen landscape for optimal design and selection of targeted immunotherapies in MM.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Deriva e Deslocamento Antigênicos , Variações do Número de Cópias de DNA , Recidiva Local de Neoplasia , Imunoterapia , Anticorpos , Proteínas de Membrana
8.
Clin Cancer Res ; 29(1): 279-288, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36282272

RESUMO

PURPOSE: Proteasome inhibitors (PI) are the backbone of various treatment regimens in multiple myeloma. We recently described the first in-patient point mutations affecting the 20S subunit PSMB5 underlying PI resistance. Notably, in vivo, the incidence of mutations in PSMB5 and other proteasome encoding genes is too low to explain the development of resistance in most of the affected patients. Thus, additional genetic and epigenetic alterations need to be explored. EXPERIMENTAL DESIGN: We performed DNA methylation profiling by Deep Bisulfite Sequencing in PSMB5, PSMC2, PSMC5, PSMC6, PSMD1, and PSMD5, a subset of proteasome subunits that have hitherto been associated with PI resistance, recruited from our own previous research, the literature, or a meta-analysis on the frequency of somatic mutations. Methylation was followed up on gene expression level and by dual-luciferase reporter assay. The KMS11 cell line served as a model to functionally test the impact of demethylating agents. RESULTS: We identified PSMD5 promoter hypermethylation and subsequent epigenetic gene silencing in 24% of PI refractory patients. Hypermethylation correlated with decreased expression and the regulatory impact of this region was functionally confirmed. In contrast, patients with newly diagnosed multiple myeloma, along with peripheral blood mononuclear cells and CD138+ plasma cells from healthy donors, generally show unmethylated profiles. CONCLUSIONS: Under the selective pressure of PI treatment, multiple myeloma cells acquire methylation of the PSMD5 promoter silencing the PSMD5 gene expression. PSMD5 acts as a key orchestrator of proteasome assembly and its downregulation was described to increase the cell's proteolytic capacity. PSMD5 hypermethylation, therefore, represents a novel mechanism of PI tolerance in multiple myeloma.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Bortezomib , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Leucócitos Mononucleares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Nucleotídeos , Linhagem Celular Tumoral
9.
Blood Adv ; 5(19): 3794-3798, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34471932

RESUMO

T cell-engaging immunotherapies exert unprecedented single-agent activity in multiple myeloma (MM), thereby putting a yet unexplored selective pressure on the clonal architecture. In this study, we report on homozygous BCMA (TNFRSF17) gene deletion after BCMA-targeting T cell-redirecting bispecific antibody therapy in a heavily pretreated MM patient. Loss of BCMA protein expression persisted over subsequent relapses, with no response to treatment with anti-BCMA antibody drug conjugate. In light of the multiple alternative targets that are emerging in addition to BCMA, we extended our analyses to delineate a more complete picture of genetic alterations that may have an impact on immunotherapy targets in MM. We performed whole-genome sequencing and RNA sequencing in 100 MM patients (50 were newly diagnosed; 50 were relapsed/refractory) and identified a significant proportion of patients with aberrations in genes encoding immunotherapy targets; GPRC5D ranked first with 15% heterozygous deletions, followed by CD38 (10%), SDC1 (5%), and TNFRSF17 (4%). Notably, these heterozygous deletions did not lower the expression levels of respective genes, but they may represent a first hit that drives the acquisition of homozygous deletions and subsequent antigen-loss relapse upon targeted immunotherapy. In summary, we show preexisting vulnerability in genes encoding immunotargets before and homozygous deletions after T cell-engaging immunotherapy.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B , Humanos , Imunoterapia , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T
10.
Nat Med ; 27(4): 616-619, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619368

RESUMO

B cell maturation antigen (BCMA) is a target for various immunotherapies and a biomarker for tumor load in multiple myeloma (MM). We report a case of irreversible BCMA loss in a patient with MM who was enrolled in the KarMMa trial ( NCT03361748 ) and progressed after anti-BCMA CAR T cell therapy. We identified selection of a clone with homozygous deletion of TNFRSF17 (BCMA) as the underlying mechanism of immune escape. Furthermore, we found heterozygous TNFRSF17 loss or monosomy 16 in 37 out of 168 patients with MM, including 28 out of 33 patients with hyperhaploid MM who had not been previously treated with BCMA-targeting therapies, suggesting that heterozygous TNFRSF17 deletion at baseline could theoretically be a risk factor for BCMA loss after immunotherapy.


Assuntos
Antígeno de Maturação de Linfócitos B/genética , Deleção de Genes , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Idoso , Antígenos de Neoplasias/metabolismo , Variações do Número de Cópias de DNA/genética , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Mieloma Múltiplo/diagnóstico por imagem
11.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847053

RESUMO

Utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), we performed this pilot study to evaluate the link between cytogenetic/genomic markers and imaging patterns in relapsed/refractory (RR) multiple myeloma (MM). We retrospectively analyzed data of 24 patients with RRMM who were treated at our institution between November 2018 and February 2020. At the last relapse/progression, patients had been treated with a median of three (range 1-10) lines of therapy. Six (25%) patients showed FDG avid extramedullary disease without adjacency to bone. We observed significantly higher maximum standardized uptake values (SUVmax) in patients harboring del(17p) compared with those without del(17p) (p = 0.025). Moreover, a high SUVmax of >15 indicated significantly shortened progression-free survival (PFS) (p = 0.01) and overall survival (OS) (p = 0.0002). One female patient exhibited biallelic TP53 alteration, i.e., deletion and mutation, in whom an extremely high SUVmax of 37.88 was observed. In summary, this pilot study suggested a link between del(17p)/TP53 alteration and high SUVmax on 18F-FDG PET/CT in RRMM patients. Further investigations are highly warranted at this point.

13.
PLoS One ; 9(4): e93852, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718418

RESUMO

The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central ß-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.


Assuntos
Acil-CoA Desidrogenase/química , Acil-CoA Desidrogenase/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dobramento de Proteína , Temperatura , Animais , Células COS , Chlorocebus aethiops , Dicroísmo Circular , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Fluorescência , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Agregados Proteicos , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
J Biol Chem ; 285(40): 30686-97, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667834

RESUMO

Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.


Assuntos
Biopterinas/análogos & derivados , Coenzimas/química , Fenilalanina Hidroxilase/química , Fenilalanina/química , Regulação Alostérica/genética , Biopterinas/química , Biopterinas/metabolismo , Biopterinas/uso terapêutico , Coenzimas/metabolismo , Coenzimas/uso terapêutico , Ativação Enzimática/genética , Fluorescência , Humanos , Cinética , Mutação de Sentido Incorreto , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/enzimologia , Fenilcetonúrias/genética
15.
Hum Mol Genet ; 18(9): 1612-23, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19224950

RESUMO

Newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) revealed a higher birth prevalence and genotypic variability than previously estimated, including numerous novel missense mutations in the ACADM gene. On average, these mutations are associated with milder biochemical phenotypes raising the question about their pathogenic relevance. In this study, we analyzed the impact of 10 ACADM mutations identified in NBS (A27V, Y42H, Y133H, R181C, R223G, D241G, K304E, R309K, I331T and R388S) on conformation, stability and enzyme kinetics of the corresponding proteins. Partial to total rescue of aggregation by co-overexpression of GroESL indicated protein misfolding. This was confirmed by accelerated thermal unfolding in all variants, as well as decreased proteolytic stability and accelerated thermal inactivation in most variants. Catalytic function varied from high residual activity to markedly decreased activity or substrate affinity. Mutations mapping to the beta-domain of the protein predisposed to severe destabilization. In silico structural analyses of the affected amino acid residues revealed involvement in functionally relevant networks. Taken together, our results substantiate the hypothesis of protein misfolding with loss-of-function being the common molecular basis in MCADD. Moreover, considerable structural alterations in all analyzed variants do not support the view that novel mutations found in NBS bear a lower risk of metabolic decompensation than that associated with mutations detected in clinically ascertained patients. Finally, the detailed insight into how ACADM missense mutations induce loss of MCAD function may provide guidance for risk assessment and counseling of patients, and in future may assist delineation of novel pharmacological strategies.


Assuntos
Acil-CoA Desidrogenase/química , Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/enzimologia , Triagem Neonatal , Dobramento de Proteína , Acil-CoA Desidrogenase/genética , Substituição de Aminoácidos , Estabilidade Enzimática , Feminino , Humanos , Recém-Nascido , Cinética , Erros Inatos do Metabolismo Lipídico/genética , Masculino , Conformação Molecular , Dados de Sequência Molecular , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA