Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 69(26): 825-829, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32614815

RESUMO

In the United States, approximately 180,000 patients receive mental health services each day at approximately 4,000 inpatient and residential psychiatric facilities (1). SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), can spread rapidly within congregate residential settings (2-4), including psychiatric facilities. On April 13, 2020, two patients were transferred to Wyoming's state psychiatric hospital from a private psychiatric hospital that had confirmed COVID-19 cases among its residents and staff members (5). Although both patients were asymptomatic at the time of transfer and one had a negative test result for SARS-CoV-2 at the originating facility, they were both isolated and received testing upon arrival at the state facility. On April 16, 2020, the test results indicated that both patients had SARS-CoV-2 infection. In response, the state hospital implemented expanded COVID-19 infection prevention and control (IPC) procedures (e.g., enhanced screening, testing, and management of new patient admissions) and adapted some standard IPC measures to facilitate implementation within the psychiatric patient population (e.g., use of modified face coverings). To assess the likely effectiveness of these procedures and determine SARS-CoV-2 infection prevalence among patients and health care personnel (HCP) (6) at the state hospital, a point prevalence survey was conducted. On May 1, 2020, 18 days after the patients' arrival, 46 (61%) of 76 patients and 171 (61%) of 282 HCP had nasopharyngeal swabs collected and tested for SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction. All patients and HCP who received testing had negative test results, suggesting that the hospital's expanded IPC strategies might have been effective in preventing the introduction and spread of SARS-CoV-2 infection within the facility. In congregate residential settings, prompt identification of COVID-19 cases and application of strong IPC procedures are critical to ensuring the protection of other patients and staff members. Although standard guidance exists for other congregate facilities (7) and for HCP in general (8), modifications and nonstandard solutions might be needed to account for the specific needs of psychiatric facilities, their patients, and staff members.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecção Hospitalar/prevenção & controle , Hospitais Psiquiátricos , Programas de Rastreamento , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Instituições Residenciais , Adulto , Idoso , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecção Hospitalar/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Wyoming/epidemiologia
2.
J Virol Methods ; 270: 95-105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31004662

RESUMO

Influenza A virus is a negative-sense RNA virus with a segmented genome consisting of eight RNA segments. Avian influenza A virus (AIV) primarily infects avian hosts and sporadically infects mammals, which can lead to adaptation to new species. Next-generation sequencing (NGS) of emerging AIV genomes extracted from respiratory samples collected on sequential days from animal models and clinical patients enables analysis of the emergence of evolutionary variants within the virus population over time. However, obtaining codon complete AIV genome at a sufficient coverage depth for nucleotide variant calling remains a challenge, especially from post-inoculation respiratory samples collected at late time points that have low viral titers. In this study, nasal wash samples from ferrets inoculated with different subtypes of AIV were collected on various days post-inoculation. Each nasal wash sample was aliquoted and extracted using five commercially available nucleic acid extraction methods. Extracted influenza virus RNA was amplified and NGS conducted using Illumina Mi-Seq. For each nasal wash sample, completeness of AIV genome segments and coverage depth were compared among five extraction methods. Nucleic acids extracted by MagNA pure compact RNA isolation consistently yielded codon complete sequences for all eight genome segments at the required coverage depth at each time point sampled. The study revealed that DNase treatment was critical to the amplification of influenza genome segments and the downstream success of codon complete NGS from nasal wash samples. The findings from this study can be applied to improve NGS of influenza and other RNA viruses that infect the respiratory tract and are collected from respiratory samples.


Assuntos
Furões/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/isolamento & purificação , Ácidos Nucleicos/isolamento & purificação , Extração em Fase Sólida/métodos , Animais , Genoma Viral , Vírus da Influenza A/genética , RNA Viral/isolamento & purificação
3.
Antivir Ther ; 15(8): 1151-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21149922

RESUMO

BACKGROUND: Antiviral drugs are an important option for managing infections caused by influenza viruses. This study assessed the drug susceptibility of 2009 pandemic influenza A (H1N1) viruses collected globally between April 2009 and January 2010. METHODS: Virus isolates were tested for adamantane susceptibility, using pyrosequencing to detect the S31N marker of adamantane resistance in the M2 protein and biological assays to assess viral replication in cell culture. To assess neuraminidase (NA) inhibitor (NAI) susceptibility, virus isolates were tested in chemiluminescent NA inhibition assays and by pyrosequencing to detect the H275Y (H274Y in N2 numbering) marker of oseltamivir resistance in the NA. RESULTS: With the exception of three, all viruses that were tested for adamantane susceptibility (n=3,362) were resistant to this class of drugs. All viruses tested for NAI susceptibility (n=3,359) were sensitive to two US Food and Drug Administration-approved NAIs, oseltamivir (mean ±sd 50% inhibitory concentration [IC(50)] 0.25 ±0.12 nM) and zanamivir (mean IC(50) 0.29 ±0.09 nM), except 23 (0.7%), which were resistant to oseltamivir, but sensitive to zanamivir. Oseltamivir-resistant viruses had the H275Y mutation in their NA and were detected in patients exposed to the drug through prophylaxis or treatment. NA activity of all viruses was inhibited by the NAIs peramivir, laninamivir (R-125489) and A-315675, except for H275Y variants, which exhibited approximately 100-fold reduction in peramivir susceptibility. CONCLUSIONS: This report provides data regarding antiviral susceptibility of 2009 pandemic influenza A (H1N1) surveillance viruses, the majority of which were resistant to adamantanes and sensitive to NAIs. These findings provide information essential for antiviral resistance monitoring and development of novel diagnostic tests for detecting influenza antiviral resistance.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Ácidos Carbocíclicos , Substituição de Aminoácidos , Animais , Linhagem Celular , Ciclopentanos/farmacologia , Cães , Farmacorresistência Viral/genética , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Testes de Sensibilidade Microbiana , Mutação de Sentido Incorreto , Neuraminidase/genética , Oseltamivir/farmacologia , Piranos , Pirrolidinas/farmacologia , Ácidos Siálicos , Ensaio de Placa Viral , Zanamivir/análogos & derivados , Zanamivir/farmacologia
4.
Antimicrob Agents Chemother ; 54(3): 1102-10, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028826

RESUMO

The M2 blockers amantadine and rimantadine and the neuraminidase (NA) inhibitors (NAIs) oseltamivir and zanamivir are approved by the FDA for use for the control of influenza A virus infections. The 2009 pandemic influenza A (H1N1) viruses (H1N1pdm) are reassortants that acquired M and NA gene segments from a Eurasian adamantane-resistant swine influenza virus. NAI resistance in the H1N1pdm viruses has been rare, and its occurrence is mainly limited to oseltamivir-exposed patients. The pyrosequencing assay has been proven to be a useful tool in surveillance for drug resistance in seasonal influenza A viruses. We provide a protocol which allows the detection of adamantane resistance markers as well as the I43T change, which is unique to the H1N1pdm M2 protein. The protocol also allows the detection of changes at residues V116, I117, E119, Q136, K150, D151, D199, I223, H275, and N295 in the NA, known to alter NAI drug susceptibility. We report on the detection of the first cases of the oseltamivir resistance-conferring mutation H275Y and the I223V change in viruses from the United States using the approach described in this study. Moreover, the assay permits the quick identification of the major NA group (V106/N248, I106/D248, or I106/N248) to which a pandemic virus belongs. Pyrosequencing is well suited for the detection of drug resistance markers and signature mutations in the M and NA gene segments of the pandemic H1N1 influenza viruses.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Marcadores Genéticos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Oseltamivir/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sequência de Aminoácidos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Dados de Sequência Molecular , Neuraminidase/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
5.
J Clin Microbiol ; 44(4): 1405-12, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16597869

RESUMO

Noroviruses (NoVs) are the most commonly identified cause of outbreaks and sporadic cases of acute gastroenteritis. We evaluated and optimized NoV-specific TaqMan real-time reverse transcription (RT)-PCR assays for the rapid detection and typing of NoV strains belonging to genogroups GI and GII and adapted them to the LightCycler platform. We expanded the detection ability of the assays by developing an assay that detects the GIV NoV strain. The assays were validated with 92 clinical samples and 33 water samples from confirmed NoV outbreaks and suspected NoV contamination cases. The assays detected NoV RNA in all of the clinical specimens previously confirmed positive by conventional RT-PCR and sequencing. Additionally, the TaqMan assays successfully detected NoV RNA in water samples containing low viral concentrations and inhibitors of RT and/or PCR, whereas the conventional method with region B primers required dilution of the inhibitors. By means of serially diluted NoV T7 RNA transcripts, a potential detection limit of <10 transcript copies per reaction mixture was observed with the GII assay and a potential detection limit of <100 transcript copies per reaction mixture was observed with the GI assay. These results and the ability to detect virus in water that was negative by RT-PCR demonstrate the higher sensitivity of the TaqMan assay compared with that of a conventional RT-PCR assay. The TaqMan methods dramatically decrease the turnaround time by eliminating post-PCR processing. These assays have proven useful in assisting scientists in public health and diagnostic laboratories report findings quickly to outbreak management teams.


Assuntos
Infecções por Caliciviridae/diagnóstico , Norovirus/isolamento & purificação , Taq Polimerase/metabolismo , Infecções por Caliciviridae/virologia , Surtos de Doenças , Fezes/virologia , Gastroenterite/virologia , Norovirus/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA