Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eadd8857, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417518

RESUMO

Rhenium disulfide belongs to group VII transition metal dichalcogenides (TMDs) with attractive properties such as exceptionally high refractive index and remarkable oscillator strength, large in-plane birefringence, and good chemical stability. Unlike most other TMDs, the peculiar optical properties of rhenium disulfide persist from bulk to the monolayer, making this material potentially suitable for applications in optical devices. In this work, we demonstrate with unprecedented clarity the strong coupling between cavity modes and excited states, which results in a strong polariton interaction, showing the interest of these materials as a solid-state counterpart of Rydberg atomic systems. Moreover, we definitively clarify the nature of important spectral features, shedding light on some controversial aspects or incomplete interpretations and demonstrating that their origin is due to the interesting combination of the very high refractive index and the large oscillator strength expressed by these TMDs.

2.
Opt Express ; 27(25): 36611-36624, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873436

RESUMO

We demonstrate partial-transfer absorption imaging as a technique for repeatedly imaging an ultracold atomic ensemble with minimal perturbation. We prepare an atomic cloud in a state that is dark to the imaging light. We then use a microwave pulse to coherently transfer a small fraction of the ensemble to a bright state, which we image using in situ absorption imaging. The amplitude or duration of the microwave pulse controls the fractional transfer from the dark to the bright state. For small transfer fractions, we can image the atomic cloud up to 50 times before it is depleted. As a sample application, we repeatedly image an atomic cloud oscillating in a dipole trap to measure the trap frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA