Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ren Fail ; 46(2): 2375741, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38994782

RESUMO

BACKGROUND: The successful treatment and improvement of acute kidney injury (AKI) depend on early-stage diagnosis. However, no study has differentiated between the three stages of AKI and non-AKI patients following heart surgery. This study will fill this gap in the literature and help to improve kidney disease management in the future. METHODS: In this study, we applied Raman spectroscopy (RS) to uncover unique urine biomarkers distinguishing heart surgery patients with and without AKI. Given the amplified risk of renal complications post-cardiac surgery, this approach is of paramount importance. Further, we employed the partial least squares-support vector machine (PLS-SVM) model to distinguish between all three stages of AKI and non-AKI patients. RESULTS: We noted significant metabolic disparities among the groups. Each AKI stage presented a distinct metabolic profile: stage 1 had elevated uric acid and reduced creatinine levels; stage 2 demonstrated increased tryptophan and nitrogenous compounds with diminished uric acid; stage 3 displayed the highest neopterin and the lowest creatinine levels. We utilized the PLS-SVM model for discriminant analysis, achieving over 90% identification rate in distinguishing AKI patients, encompassing all stages, from non-AKI subjects. CONCLUSIONS: This study characterizes the incidence and risk factors for AKI after cardiac surgery. The unique spectral information garnered from this study can also pave the way for developing an in vivo RS method to detect and monitor AKI effectively.


Assuntos
Injúria Renal Aguda , Biomarcadores , Procedimentos Cirúrgicos Cardíacos , Análise Espectral Raman , Urinálise , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/urina , Injúria Renal Aguda/etiologia , Análise Espectral Raman/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores/urina , Urinálise/métodos , Creatinina/urina , Máquina de Vetores de Suporte , Ácido Úrico/urina , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/urina , Complicações Pós-Operatórias/etiologia , Fatores de Risco , Análise dos Mínimos Quadrados
2.
J Formos Med Assoc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821736

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) that against programmed cell death protein-1 (PD-1) and its ligand PD-L1 have been approved as a promising treatment of many human cancers. However, the responses to these ICIs were limited in patients with ovarian cancer. Studies have indicated that the response to PD-1/PD-L1 blockade might be correlated with the PD-L1 expression level in cancer cells. Nucleophosmin (NPM/B23) was found to be a potential target for immunotherapy. Whether NPM/B23 plays a role in cancer-associated immunity, such as PD-1/PD-L1 axis, and its underlying mechanisms remain largely unknown in ovarian cancer. METHODS: We applied ovarian cancer cell lines as research models. The effect of modulating PD-L1 by NPM/B23 was subsequently confirmed via Western blot, flow cytometry, qRT-PCR, luciferase reporter assays, and immunoprecipitation. Protein stability and ubiquitin assay assays were used to analyze the interplay between NPM/B23 and NF-ĸB/p65 in PD-L1 regulation. The MOSEC/Luc xenograft mouse model was used to validate the role of NPM/B23-PD-L1 through tumor growth in vivo. RESULTS: Our results revealed that NPM/B23 negatively regulates PD-L1 expression via a protein complex with NF-κB/p65 and through an IFN-γ pathway. Moreover, NPM/B23 inhibitor/modulator sensitized ovarian cancer cells to the anti-PD-1 antibody by regulating PD-L1 expression in the immunocompetent mouse model. Compared to anti-PD-1 antibody alone, a combination of anti-PD-1 antibody and NPM/B23 inhibitor/modulator showed reduced tumorigenesis and increased CD8+ T-cell expansion, thus contributing to prolonged survival on MOSEC/Luc-bearing mouse model. CONCLUSION: Targeting NPM/B23 is a novel and potential therapeutic approach to sensitize ovarian cancer cells to immunotherapy.

3.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722222

RESUMO

In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.


Assuntos
Decídua , Implantação do Embrião , Fator Inibidor de Leucemia , MicroRNAs , Transdução de Sinais , Células Estromais , Humanos , Feminino , Fator Inibidor de Leucemia/metabolismo , Gravidez , Decídua/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Células Estromais/metabolismo , Inflamassomos/metabolismo , Fatores de Transcrição STAT/metabolismo , Vesículas Extracelulares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
4.
Anticancer Res ; 44(5): 1963-1971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677769

RESUMO

BACKGROUND/AIM: Cancer cachexia is a wasting syndrome that has a devastating impact on the prognosis of patients with cancer. It is well-documented that pro-inflammatory cytokines are involved in the progression of this disorder. Therefore, this study was conducted to investigate the protective effect of taurine, an essential nonprotein amino acid with great anti-inflammatory properties, in attenuating muscle atrophy induced by cancer. MATERIALS AND METHODS: Conditioned media (CM) derived from T24 human bladder carcinoma cells with or without 5 mM taurine were incubated with human skeletal muscle cells (HSkMCs) and their differentiation was examined. The intracellular reactive oxygen species (ROS), morphology, and the catabolic pathway were monitored. RESULTS: T24-derived CM with high levels of TNF-α and IL-6 caused aberrant ROS accumulation and formation of atrophic myotubes by HSkMCs. In T24 cancer cells, taurine significantly inhibited the production of TNF-α and IL-6. In HSkMCs, taurine increased ROS clearance during differentiation and preserved the myotube differentiation ability impaired by the inflammatory tumor microenvironment. In addition, taurine ameliorated myotube atrophy by regulating the Akt/FoxO1/MuRF1 and MAFbx signaling pathways. CONCLUSION: Taurine rescues cancer-induced atrophy in human skeletal muscle cells by ameliorating the inflammatory tumor microenvironment. Taurine supplementation may be a promising approach for intervening with the progression of cancer cachexia.


Assuntos
Atrofia Muscular , Espécies Reativas de Oxigênio , Taurina , Microambiente Tumoral , Humanos , Taurina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Atrofia Muscular/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Caquexia/tratamento farmacológico , Caquexia/patologia , Caquexia/metabolismo , Caquexia/etiologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Meios de Cultivo Condicionados/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo
5.
Nanoscale Adv ; 6(3): 947-959, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298598

RESUMO

Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.

6.
J Endocr Soc ; 8(3): bvae001, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38264268

RESUMO

Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA