Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Aging Cell ; : e14150, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576084

RESUMO

Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.

2.
Front Neurol ; 14: 1263291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900603

RESUMO

Background: Conducting clinical trials for traumatic spinal cord injury (tSCI) presents challenges due to patient heterogeneity. Identifying clinically similar subgroups using patient demographics and baseline injury characteristics could lead to better patient-centered care and integrated care delivery. Purpose: We sought to (1) apply an unsupervised machine learning approach of cluster analysis to identify subgroups of tSCI patients using patient demographics and injury characteristics at baseline, (2) to find clinical similarity within subgroups using etiological variables and outcome variables, and (3) to create multi-dimensional labels for categorizing patients. Study design: Retrospective analysis using prospectively collected data from a large national multicenter SCI registry. Methods: A method of spectral clustering was used to identify patient subgroups based on the following baseline variables collected since admission until rehabilitation: location of the injury, severity of the injury, Functional Independence Measure (FIM) motor, and demographic data (age, and body mass index). The FIM motor score, the FIM motor score change, and the total length of stay were assessed on the subgroups as outcome variables at discharge to establish the clinical similarity of the patients within derived subgroups. Furthermore, we discussed the relevance of the identified subgroups based on the etiological variables (energy and mechanism of injury) and compared them with the literature. Our study also employed a qualitative approach to systematically describe the identified subgroups, crafting multi-dimensional labels to highlight distinguishing factors and patient-focused insights. Results: Data on 334 tSCI patients from the Rick Hansen Spinal Cord Injury Registry was analyzed. Five significantly different subgroups were identified (p-value ≤0.05) based on baseline variables. Outcome variables at discharge superimposed on these subgroups had statistically different values between them (p-value ≤0.05) and supported the notion of clinical similarity of patients within each subgroup. Conclusion: Utilizing cluster analysis, we identified five clinically similar subgroups of tSCI patients at baseline, yielding statistically significant inter-group differences in clinical outcomes. These subgroups offer a novel, data-driven categorization of tSCI patients which aligns with their demographics and injury characteristics. As it also correlates with traditional tSCI classifications, this categorization could lead to improved personalized patient-centered care.

3.
Neurosurgery ; 93(2): 399-408, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171175

RESUMO

BACKGROUND: Intracranial pressure (ICP) monitoring is widely practiced, but the indications are incompletely developed, and guidelines are poorly followed. OBJECTIVE: To study the monitoring practices of an established expert panel (the clinical working group from the Seattle International Brain Injury Consensus Conference effort) to examine the match between monitoring guidelines and their clinical decision-making and offer guidance for clinicians considering monitor insertion. METHODS: We polled the 42 Seattle International Brain Injury Consensus Conference panel members' ICP monitoring decisions for virtual patients, using matrices of presenting signs (Glasgow Coma Scale [GCS] total or GCS motor, pupillary examination, and computed tomography diagnosis). Monitor insertion decisions were yes, no, or unsure (traffic light approach). We analyzed their responses for weighting of the presenting signs in decision-making using univariate regression. RESULTS: Heatmaps constructed from the choices of 41 panel members revealed wider ICP monitor use than predicted by guidelines. Clinical examination (GCS) was by far the most important characteristic and differed from guidelines in being nonlinear. The modified Marshall computed tomography classification was second and pupils third. We constructed a heatmap and listed the main clinical determinants representing 80% ICP monitor insertion consensus for our recommendations. CONCLUSION: Candidacy for ICP monitoring exceeds published indicators for monitor insertion, suggesting the clinical perception that the value of ICP data is greater than simply detecting and monitoring severe intracranial hypertension. Monitor insertion heatmaps are offered as potential guidance for ICP monitor insertion and to stimulate research into what actually drives monitor insertion in unconstrained, real-world conditions.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipertensão Intracraniana , Humanos , Pressão Intracraniana/fisiologia , Lesões Encefálicas Traumáticas/diagnóstico , Hipertensão Intracraniana/diagnóstico , Escala de Coma de Glasgow , Monitorização Fisiológica/métodos
4.
Neuron ; 111(3): 328-344.e7, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731429

RESUMO

The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Humanos , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Medula Espinal/metabolismo , Neurônios Motores/metabolismo , Modelos Animais , Neuroglia/metabolismo , Mamíferos
5.
J Neurosurg ; 138(4): 1088-1097, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932267

RESUMO

OBJECTIVE: Despite incremental progress in the representation and proportion of women in the field of neurosurgery, female neurosurgeons still represent an overwhelming minority of the current US physician workforce. Prior research has predicted the timeline by which the proportion of female neurosurgery residents may reach that of males, but none have used the contemporary data involving the entire US neurosurgical workforce. METHODS: The authors performed a retrospective analysis of the National Plan and Provider Enumeration System (NPPES) registry of all US neurosurgeons to determine changes in the proportions of women in neurosurgery across states, census divisions, and census regions between 2010 and 2020. A univariate linear regression was performed to assess historical growth, and then Holt-Winter forecasting was used to predict in what future year gender parity may be reached in this field. RESULTS: A majority of states, divisions, and regions have increased the proportion of female neurosurgeons from 2010. Given current growth rates, the authors found that female neurosurgeons will not reach the proportion of women in the overall medical workforce until 2177 (95% CI 2169-2186). Furthermore, they found that women in neurosurgery will not match their current proportion of the overall US population until 2267 (95% CI 2256-2279). CONCLUSIONS: Whereas many studies have focused on the overall increase of women in neurosurgery in the last decade, this one is the first to compare this growth in the context of the overall female physician workforce and the female US population. The results suggest a longer timeline for gender parity in neurosurgery than previous studies have suggested and should further catalyze the targeted recruitment of women into the field, an overhaul of current policies in place to support and develop the careers of women in neurosurgery, and increased self-reflection and behavioral change from the entire neurosurgery community.


Assuntos
Neurocirurgia , Masculino , Humanos , Feminino , Estados Unidos , Estudos Retrospectivos , Neurocirurgiões , Procedimentos Neurocirúrgicos , Recursos Humanos
6.
Arch Phys Med Rehabil ; 104(1): 63-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36002056

RESUMO

OBJECTIVE: To obtain expert consensus on the parameters and etiologic conditions required to retrospectively identify cases of non-traumatic spinal cord injury (NTSCI) in health administrative and electronic medical record (EMR) databases based on the rating of clinical vignettes. DESIGN: A modified Delphi process included 2 survey rounds and 1 remote consensus panel. The surveys required the rating of clinical vignettes, developed after chart reviews and expert consultation. Experts who participated in survey rounds were invited to participate in the Delphi Consensus Panel. SETTING: An international collaboration using an online meeting platform. PARTICIPANTS: Thirty-one expert physicians and/or clinical researchers in the field of spinal cord injury (SCI). MAIN OUTCOME MEASURE(S): Agreement on clinical vignettes as NTSCI. Parameters to classify cases of NTSCI in health administrative and EMR databases. RESULTS: In health administrative and EMR databases, cauda equina syndromes should be considered SCI and classified as a NTSCI or TSCI based on the mechanism of injury. A traumatic event needs to be listed for injury to be considered TSCI. To be classified as NTSCI, neurologic sufficient impairments (motor, sensory, bowel, and bladder) are required, in addition to an etiology. It is possible to have both a NTSCI and a TSCI, as well as a recovered NTSCI. If information is unavailable or missing in health administrative and EMR databases, the case may be listed as "unclassifiable" depending on the purpose of the research study. CONCLUSION: The Delphi panel provided guidelines to appropriately classify cases of NTSCI in health administrative and EMR databases.


Assuntos
Registros Eletrônicos de Saúde , Traumatismos da Medula Espinal , Humanos , Estudos Retrospectivos , Traumatismos da Medula Espinal/etiologia , Bases de Dados Factuais
7.
Can J Pain ; 7(2): 2264895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170158

RESUMO

Background: Preclinical and clinical evidence suggests that cannabis has potential analgesic properties. However, cannabinoid receptor expression and localization within spinal cord pain processing circuits remain to be characterized across sex and species. Aims: We aimed to investigate the differential expression of the cannabinoid type 1 (CB1) receptor across dorsal horn laminae and cell populations in male and female adult rats and humans. Methods: To investigate and quantify CB1 receptor expression in the spinal dorsal horn across species, we refined immunohistochemical procedures for successful rat and human fixed tissue staining and confocal imaging. Immunohistochemical results were complemented with analysis of CB1 gene (CNR1) expression within rodent and human dorsal horn using single-cell/nuclei RNA sequencing data sets. Results: We found that CB1 was preferentially localized to the neuropil within the superficial dorsal horn of both rats and humans, with CB1 somatic staining across dorsal horn laminae. CB1 receptor immunoreactivity was significantly higher in the superficial dorsal horn compared to the deeper dorsal horn laminae for both rats and humans, which was conserved across sex. Interestingly, we found that CB1 immunoreactivity was not primarily localized to peptidergic afferents in rats and humans and that CNR1 (CB1) but not CNR2 (CB2) was robustly expressed in dorsal horn neuron subpopulations of both rodents and humans. Conclusions: The conserved preferential expression of CB1 receptors in the superficial dorsal horn in male and female rodents and humans has significant implications for understanding the roles of this cannabinoid receptor in spinal mechanisms of nociception and analgesia.


Contexte: Les données probantes précliniques et cliniques indiquent que le cannabis possède des propriétés analgésiques potentielles. Cependant, l'expression et la localisation des récepteurs cannabinoïdes au sein des circuits de traitement de la douleur de la moelle épinière restent à caractériser selon le sexe et les espèces.Objectifs: Nous avons cherché à étudier l'expression différenciée du récepteur cannabinoïde de type 1 (CB1) dans les différentes couches de la corne dorsale et les populations cellulaires chez des rats et des êtres humains adultes de sexe masculin et féminin.Méthodes: Pour étudier et quantifier l'expression des récepteurs CB1 dans la corne dorsale de la moelle épinière chez différentes espèces, nous avons perfectionné les procédures d'immunohistochimie pour obtenir des résultats de coloration réussis sur des échantillons de tissus provenant de rats et d'êtres humains, ainsi que des images confocales. Les résultats immunohistochimiques ont été complétés par l'analyse de l'expression du gène CB1 (CNR1) dans la corne dorsale des rongeurs et des humains en utilisant des ensembles de données de séquençage d'ARN au niveau des cellules uniques et des noyaux.Résultats: Nous avons constaté que le CB1 était principalement localisé dans le neuropile au sein de la corne dorsale superficielle chez les rats et les humains, avec une coloration somatique du CB1 dans les différentes couches de la corne dorsale. Chez les deux espèces, l'immunoréactivité du récepteur CB1 était significativement plus élevée dans la couche superficielle de la corne dorsale par rapport aux couches plus profondes, indépendamment du sexe. De manière intéressante, nous avons constaté que l'immunoréactivité du CB1 n'était pas principalement localisée dans les afférences peptidergiques chez les rats et les humains. De plus, nous avons observé une forte expression du gène CNR1 (CB1), mais pas du CNR2 (CB2), au sein de sous-populations de neurones de la corne dorsale chez les rongeurs et les êtres humains.Conclusions: La localisation privilégiée et constante des récepteurs CB1 dans la couche superficielle de la corne dorsale chez les rongeurs et les humains, quel que soit leur sexe, revêt une importance majeure pour la compréhension des fonctions de ce récepteur des cannabinoïdes dans les mécanismes médullaires de la nociception et de l'analgésie.

8.
Brain ; 145(3): 1124-1138, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35323848

RESUMO

The prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn, direct investigations using rodent and human preclinical pain models have been lacking. Here, we discovered that in the Freund's adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and N-methyl-D-aspartate receptor (NMDAR) potentiation within superficial dorsal horn neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator brain-derived neurotrophic factor (BDNF) failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B and pGluN2B) in female rats, resulting in no effect of ex vivo brain-derived neurotrophic factor on synaptic NMDAR responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans. As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in superficial dorsal horn neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDAR potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.


Assuntos
Dor Crônica , Simportadores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Humanos , Masculino , Neurônios/metabolismo , Ratos , Caracteres Sexuais
9.
Chem Commun (Camb) ; 58(17): 2870-2873, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35132974

RESUMO

Targeting of molecular constituents of thrombi with aptamer functionalized core-shell nanoparticles (CSN) allowed for high resolution clot delineation in T2-weighted magnetic resonance imaging. Meanwhile, the gold-coating demonstrated sufficient contrast capabilities in computed tomography (1697 HU µM-1). This targeted CSN formulation could allow for precise imaging of blood clots at low nanomolar concentrations.


Assuntos
Aptâmeros de Nucleotídeos/química , Fibrinogênio/química , Ouro/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Trombose/diagnóstico por imagem , Humanos
10.
Acta Neuropathol ; 141(5): 725-754, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694021

RESUMO

The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson's-linked neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Dopamina/metabolismo , Mesencéfalo/metabolismo , Degeneração Neural/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Degeneração Neural/patologia , Oxirredução , Adulto Jovem
11.
J Neurotrauma ; 38(15): 2065-2072, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559524

RESUMO

Acute traumatic spinal cord injury (SCI) can result in severe, lifelong neurological deficits. After SCI, Rho activation contributes to collapse of axonal growth cones, failure of axonal regeneration, and neuronal loss. This randomized, double-blind, placebo-controlled phase 2b/3 study evaluated the efficacy and safety of Rho inhibitor VX-210 (9 mg) in patients after acute traumatic cervical SCI. The study enrolled patients 14-75 years of age with acute traumatic cervical SCIs, C4-C7 (motor level) on each side, and American Spinal Injury Association Impairment Scale (AIS) Grade A or B who had spinal decompression/stabilization surgery commencing within 72 h after injury. Patients were randomized 1:1 with stratification by age (<30 vs. ≥30 years) and AIS grade (A vs. B with sacral pinprick preservation vs. B without sacral pinprick preservation). A single dose of VX-210 or placebo in fibrin sealant was administered topically onto the dura over the site of injury during decompression/stabilization surgery. Patients were evaluated for medical, neurological, and functional changes, and serum was collected for pharmacokinetics and immunological analyses. Patients were followed up for up to 12 months after treatment. A planned interim efficacy-based futility analysis was conducted after ∼33% of patients were enrolled. The pre-defined futility stopping rule was met, and the study was therefore ended prematurely. In the final analysis, the primary efficacy end-point was not met, with no statistically significant difference in change from baseline in upper-extremity motor score at 6 months after treatment between the VX-210 (9-mg) and placebo groups. This work opens the door to further improvements in the design and conduct of clinical trials in acute SCI.


Assuntos
Medula Cervical/lesões , Inibidores Enzimáticos/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/uso terapêutico , ADP Ribose Transferases , Adolescente , Adulto , Idoso , Toxinas Botulínicas , Vértebras Cervicais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Resultado do Tratamento , Adulto Jovem
13.
Skelet Muscle ; 11(1): 1, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397479

RESUMO

BACKGROUND: Maintaining stem cells in physiologically relevant states is necessary to understand cell and context-specific signalling paradigms and to understand complex interfaces between cells in situ. Understanding human stem cell function is largely based on tissue biopsies, cell culture, and transplantation into model organisms. METHODS: Here, we describe a method to isolate post-mortem intact human muscle myofibers and culture muscle stem cells within the niche microenvironment to assay cellular dynamics, stem cell identity, stem cell hierarchy, and differentiation potential. RESULTS: We show human myofiber culture maintains complex cell-cell contacts and extracellular niche composition during culture. Human satellite cells can be cultured at least 8 days, which represents a timepoint of activation, differentiation, and de novo human myofiber formation. We demonstrate that adult human muscle stem cells undergo apicobasal and planar cell divisions and express polarized dystrophin and EGFR. Furthermore, we validate that stimulation of the EGFR pathway stimulates the generation of myogenic progenitors and myogenic differentiation. CONCLUSIONS: This method provides proof of principle evidence for the use of human muscle to evaluate satellite cell dynamics and has applications in pre-clinical evaluation of therapeutics targeting muscle repair.


Assuntos
Células Satélites de Músculo Esquelético , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Desenvolvimento Muscular , Músculo Esquelético
14.
ACS Appl Mater Interfaces ; 13(8): 9412-9424, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33395250

RESUMO

Objective: An important clinical question in the determination of the extent of thrombosis-related vascular conditions is the identification of blood clot location. Fibrin is a major molecular constituent of blood clots and can, therefore, be utilized in molecular imaging. In this proof-of-concept study, we sought to prepare a fibrin-targeting magnetic resonance imaging contrast agent, using a Gd(III)-loaded fibrinogen aptamer (FA) chelate conjugate (Gd(III)-NOTA-FA) (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), to endow the ability to specifically accumulate at the location of blood clots, thereby enhancing contrast capabilities. Methods: The binding affinity of FA for fibrin was confirmed by fluorescence microscopy and microscale thermophoresis. The preparation and effective loading of the chelate-aptamer conjugates were confirmed by mass spectrometry and a xylenol orange colorimetric test. Longitudinal and transverse relaxivities and the effects of target binding were assessed using T1- and T2-map sequences at 7 T. T1- and T2-weighted images were acquired after blood clots were treated with Gd(III)-NOTA-FA. Collagen was used as the protein control, while an unrelated aptamer sequence, FB139, was used as the aptamer control. Results: FA demonstrated a high affinity and selectivity toward the polymeric protein, with a Kd of 16.6 nM, confirming an avidity over fibrinogen. The longitudinal (r1) and transverse (r2) relaxivities of Gd(III)-NOTA-FA demonstrated that conjugation to the long aptamer strand shortened T1 relaxation times and increased T2 relaxation times (3.04 and 38.7 mM-1 s-1, respectively). These effects were amplified by binding to the fibrin target (1.73 and 46.5 mM-1 s-1, respectively). In vitro studies with thrombin-polymerized human blood (clots) in whole blood showed an unexpected enhancement of signal intensity (hyperintense) produced exclusively at the location of the clot during the T2-weighted scan, while the presence of fibrinogen within a whole blood pool resulted in T1 signal intensity enhancement throughout the pool. This is advantageous, as simply reversing the type of a scan from a typical T1-weighted to a T2-weighted would allow to selectively highlight the location of blood clots. Conclusions: Gd(III)-NOTA-FA can be used for molecular imaging of thrombi, through fibrin-targeted delivery of contrast to the location of blood clots in T2-weighted scans.


Assuntos
Aptâmeros de Nucleotídeos/química , Meios de Contraste/química , Complexos de Coordenação/química , Trombose/diagnóstico por imagem , Aptâmeros de Nucleotídeos/metabolismo , Meios de Contraste/metabolismo , Complexos de Coordenação/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética , Estudo de Prova de Conceito , Trombose/metabolismo
15.
J Neurotrauma ; 38(3): 322-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32907483

RESUMO

Traumatic cauda equina injury (TCEI) is usually caused by spine injury at or below L1 and can result in motor and/or sensory impairments and/or neurogenic bowel and bladder. We examined factors associated with recovery in motor strength, walking ability, and bowel and bladder function to aid in prognosis and establishing rehabilitation goals. The analysis cohort was comprised of persons with acute TCEI enrolled in the Rick Hansen Spinal Cord Injury Registry. Multi-variable regression analysis was used to determine predictors for lower-extremity motor score (LEMS) at discharge, walking ability at discharge as assessed by the walking subscores of either the Functional Independence Measure (FIM) or Spinal Cord Independence Measure (SCIM), and improvement in bowel and bladder function as assessed by FIM-relevant subscores. Age, sex, neurological level and severity of injury, time from injury to surgery, rehabilitation onset, and length of stay were examined as potential confounders. The cohort included 214 participants. Median improvement in LEMS was 4 points. Fifty-two percent of participants were able to walk, and >20% recovered bowel and bladder function by rehabilitation discharge. Multi-variable analyses revealed that shorter time from injury to rehabilitation admission (onset) was a significant predictor for both improvement in walking ability and bowel function. Longer rehabilitation stay and being an older female were associated with improved bladder function. Our results suggest that persons with TCEI have a reasonable chance of recovery in walking ability and bowel and bladder function. This study provides important information for rehabilitation goals setting and communication with patients and their families regarding prognosis.


Assuntos
Cauda Equina/lesões , Intestinos/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária/fisiopatologia , Caminhada/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Estado Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/reabilitação , Adulto Jovem
16.
Bioconjug Chem ; 31(12): 2737-2749, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33232126

RESUMO

Objective: Random formation of thrombi is classified as a pathological process that may result in partial or complete obstruction of blood flow and limited perfusion. Further complications include pulmonary embolism, thrombosis-induced myocardial infraction, ischemic stroke, and others. Location and full delineation of the blood clot are considered to be two clinically relevant aspects that could streamline proper diagnosis and treatment follow-up. In this work, we prepared two types of X-ray attenuating contrast formulations, using fibrinogen aptamer as the clot-seeking moiety. Methods: Two novel aptamer-targeted formulations were designed. Iodine-modified bases were directly incorporated into a fibrinogen aptamer (iodo-FA). Isothermal titration calorimetry was used to confirm that these modifications did not negatively impact target binding. Iodo-FA was tested for its ability to produce concentration-dependent contrast enhancement in a phantom CT. It was subsequently tested in vitro with clotted human and swine blood. This allowed for translation into ex vivo testing, using fluoroscopy. FA was also used to functionalize gold nanoparticles (FA-AuNPs), and contrast capabilities were confirmed. This formulation was tested in vitro using clotted human blood in a CT scan. Results: Unmodified FA and iodo-FA demonstrated a nearly identical affinity toward fibrin, confirming that base modifications did not impact target binding. Iodo-FA and FA-AuNPs both demonstrated excellent concentration-dependent contrast enhancement capabilities (40.5 HU mM-1 and 563.6 HU µM-1, respectively), which were superior to the clinically available agent, iopamidol. In vitro CT testing revealed that iodo-FA is able to penetrate into the blood clots, producing contrast enhancement throughout, while FA-AuNPs only accumulated on the surface of the clot. Iodo-FA was thereby translated to ex vivo testing, confirming target-binding associated accumulation of the contrast material at the location of the clot within the dilation of the external carotid artery. This resulted in a 34% enhancement of the clot. Conclusions: Both iodo-FA and FA-AuNPs were confirmed to be effective contrast formulations in CT. Targeting of fibrin, a major structural constituent of thrombi, with these novel contrast agents would allow for higher contrast enhancement and better clot delineation in CT and fluoroscopy.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Meios de Contraste/metabolismo , Fluoroscopia/métodos , Trombose/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Humanos , Suínos
17.
Front Neurosci ; 14: 607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625055

RESUMO

Improving the clinical translation of animal-based neural stem/progenitor cell (NSPC) therapies to humans requires an understanding of intrinsic human and animal cell characteristics. We report a novel in vitro method to assess spinal cord NSPCs from a small (rodent) and large (porcine) animal model in comparison to human NSPCs. To extract live adult human, porcine, and rodent spinal cord tissue, we illustrate a strategy using an anterior or posterior approach that was simulated in a porcine model. The initial expansion of primary NSPCs is carried out using the neurosphere assay followed by a pharmacological treatment phase during which NSPCs derived from humans, porcines, and rodents are assessed in parallel using the same defined parameters. Using this model, NSPCs from all species demonstrated multi-lineage differentiation and self-renewal. Importantly, these methods provide conditions to enable the direct comparison of species-dependent cell behavior in response to specific exogenous signals.

18.
Brain ; 142(6): 1535-1546, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135041

RESUMO

Dysregulated excitability within the spinal dorsal horn is a critical mediator of chronic pain. In the rodent nerve injury model of neuropathic pain, BDNF-mediated loss of inhibition (disinhibition) gates the potentiation of excitatory GluN2B N-methyl-d-aspartate receptor (NMDAR) responses at lamina I dorsal horn synapses. However, the centrality of this mechanism across pain states and species, as well as the molecular linker involved, remain unknown. Here, we show that KCC2-dependent disinhibition is coupled to increased GluN2B-mediated synaptic NMDAR responses in a rodent model of inflammatory pain, with an associated downregulation of the tyrosine phosphatase STEP61. The decreased activity of STEP61 is both necessary and sufficient to prime subsequent phosphorylation and potentiation of GluN2B NMDAR by BDNF at lamina I synapses. Blocking disinhibition reversed the downregulation of STEP61 as well as inflammation-mediated behavioural hypersensitivity. For the first time, we characterize GluN2B-mediated NMDAR responses at human lamina I synapses and show that a human ex vivo BDNF model of pathological pain processing downregulates KCC2 and STEP61 and upregulates phosphorylated GluN2B at dorsal horn synapses. Our results demonstrate that STEP61 is the molecular brake that is lost following KCC2-dependent disinhibition and that the decrease in STEP61 activity drives the potentiation of excitatory GluN2B NMDAR responses in rodent and human models of pathological pain. The ex vivo human BDNF model may thus form a translational bridge between rodents and humans for identification and validation of novel molecular pain targets.


Assuntos
Neuralgia/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/fisiopatologia , Fosforilação , Ratos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismo , Adulto Jovem
19.
Comput Biol Med ; 104: 220-226, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529711

RESUMO

The stimulation of the proliferation and differentiation of neural stem cells (NSCs) offers the possibility of a renewable source of replacement cells to treat numerous neurological diseases including spinal cord injury, traumatic brain injury and stroke. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) have been used to stimulate NSCs to renew, expand, and produce precursors for neural repair within an adult brown rat (Rattus norvegicus). To provide greater insight into the interspecies protein-protein interactions between human FGF-2 and EGF proteins and native R. norvegicus proteins, we have utilized the Massively Parallel Protein-Protein Interaction Prediction Engine (MP-PIPE) in an attempt to computationally shed light on the pathways potentially driving neurosphere proliferation. This study determined similar and differing protein interaction pathways between the two growth factors and the proteins in R. norvegicus compared with the proteins in H. sapiens. The protein-protein interactions predicted that EGF and FGF-2 may behave differently in rats than in humans. The identification and improved understanding of these differences may help to improve the clinical translation of NSC therapies from rats to humans.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Modelos Neurológicos , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal , Coluna Vertebral/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Ratos , Traumatismos da Medula Espinal/patologia , Coluna Vertebral/patologia
20.
J Prev Med Public Health ; 51(5): 227-233, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30286594

RESUMO

OBJECTIVES: Chronic diseases, including back pain, result in significant patient morbidity and societal burden. Overall improvement in physical fitness is recommended for prevention and treatment. Walking is a convenient modality for achieving initial gains. Our objective was to determine whether neighbourhood walkability, acting as a surrogate measure of physical fitness, was associated with the presence of chronic disease. METHODS: We conducted a cross-sectional study of prospectively collected data from a prior randomized cohort study of 227 patients referred for tertiary assessment of chronic back pain in Ottawa, ON, Canada. The Charlson Comorbidity Index (CCI) was calculated from patient-completed questionnaires and medical record review. Using patients' postal codes, neighbourhood walkability was determined using the Walk Score, which awards points based on the distance to the closest amenities, yielding a score from 0 to 100 (0- 50: car-dependent; 50-100: walkable). RESULTS: Based on the Walk Score, 134 patients lived in car-dependent neighborhoods and 93 lived in walkable neighborhoods. A multivariate logistic regression model, adjusted for age, gender, rural postal code, body mass index, smoking, median household income, percent employment, pain, and disability, demonstrated an adjusted odds ratio of 2.75 (95% confidence interval, 1.16 to 6.53) times higher prevalence for having a chronic disease for patients living in a car-dependent neighborhood. There was also a significant dose-related association (p=0.01; Mantel-Haenszel chi-square=6.4) between living in car-dependent neighbourhoods and more severe CCI scores. CONCLUSIONS: Our findings suggest that advocating for improved neighbourhood planning to permit greater walkability may help offset the burden of chronic disease.


Assuntos
Dor nas Costas/epidemiologia , Características de Residência , Caminhada , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Canadá/epidemiologia , Doença Crônica , Comorbidade , Estudos Transversais , Feminino , Sistemas de Informação Geográfica , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA