RESUMO
The paradigm of non-small cell lung cancer (NSCLC) treatment has been profoundly influenced by the development of immune checkpoint inhibitors (ICI), but the range of clinical responses observed among patients poses significant challenges. To date, analyses of tumor biopsies are the only parameter used to guide prognosis to ICI therapy. Tumor biopsies, however, are often difficult to obtain and tissue-based biomarkers are limited by intratumoral heterogeneity and temporal variability. In response, there has been a growing emphasis on the development of "liquid biopsy"â derived biomarkers, which offer a minimally invasive means to dynamically monitor the immune status of NSCLC patients either before and/or during the course of treatment. Here we review studies in which multiple blood-based biomarkers encompassing circulating soluble analytes, immune cell subsets, circulating tumor DNA, blood-based tumor mutational burden, and circulating tumor cells have shown promising associations with the clinical response of NSCLC patients to ICI therapy. These investigations have unveiled compelling correlations between the peripheral immune status of patients both before and during ICI therapy and patient outcomes, which include response rates, progression-free survival, and overall survival. There is need for rigorous validation and standardization of these blood-based assays for broader clinical application. Integration of multiple blood-based biomarkers into comprehensive panels or algorithms also has the potential to enhance predictive accuracy. Further research aimed at longitudinal monitoring of circulating biomarkers is also crucial to comprehend immune dynamics and resistance mechanisms and should be used alongside tissue-based methods that interrogate the tumor microenvironment to guide treatment decisions and may inform on the development of novel therapeutic strategies. The data reviewed here reinforce the opportunity to refine patient stratification, optimize treatments, and improve outcomes not only in NSCLC but also in the wider spectrum of solid tumors undergoing immunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Prognóstico , Microambiente TumoralRESUMO
BACKGROUND: Bintrafusp alfa, a first-in-class bifunctional fusion protein targeting transforming growth factor-ß (TGF-ß) and programmed cell death ligand 1, has demonstrated encouraging efficacy as second-line treatment in patients with non-small cell lung cancer (NSCLC) in a dose expansion cohort of the phase 1, open-label clinical trial (NCT02517398). Here, we report the safety, efficacy, and biomarker analysis of bintrafusp alfa in a second expansion cohort of the same trial (biomarker cohort). METHODS: Patients with stage IIIb/IV NSCLC who were either immune checkpoint inhibitor (ICI)-naïve (n=18) or ICI-experienced (n=23) were enrolled. The primary endpoint was the best overall response. Paired biopsies (n=9/41) and peripheral blood (n=14/41) pretreatment and on-treatment were studied to determine the immunological effects of treatment and for associations with clinical activity. RESULTS: Per independent review committee assessment, objective responses were observed in the ICI-naïve group (overall response rate, 27.8%). No new or unexpected safety signals were identified. Circulating TGF-ß levels were reduced (>97%; p<0.001) 2 weeks after initiation of treatment with bintrafusp alfa and remained reduced up to 12 weeks. Increases in lymphocytes and tumor-associated macrophages (TAMs) were observed in on-treatment biospies, with an increase in the M2 (tumor trophic TAMs)/M1 (inflammatory TAMs) ratio associated with poor outcomes. Specific peripheral immune analytes at baseline and early changes after treatment were associated with clinical response. CONCLUSIONS: Bintrafusp alfa was observed to have modest clinical activity and manageable safety, and was associated with notable immunologic changes involving modulation of the tumor immune microenvironment in patients with advanced NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Fatores Imunológicos/uso terapêutico , Imunoterapia , Microambiente TumoralRESUMO
Despite the success of programmed cell death-1 (PD-1) and PD-1 ligand (PD-L1) inhibitors in treating solid tumors, only a proportion of patients respond. Here, we describe a first-in-class bifunctional therapeutic molecule, STAR0602, that comprises an antibody targeting germline Vß6 and Vß10 T cell receptors (TCRs) fused to human interleukin-2 (IL-2) and simultaneously engages a nonclonal mode of TCR activation with costimulation to promote activation and expansion of αß T cell subsets expressing distinct variable ß (Vß) TCR chains. In solution, STAR0602 binds IL-2 receptors in cis with Vß6/Vß10 TCRs on the same T cell, promoting expansion of human Vß6 and Vß10 CD4+ and CD8+ T cells that acquire an atypical central memory phenotype. Monotherapy with a mouse surrogate molecule induced durable tumor regression across six murine solid tumor models, including several refractory to anti-PD-1. Analysis of murine tumor-infiltrating lymphocyte (TIL) transcriptomes revealed that expanded Vß T cells acquired a distinct effector memory phenotype with suppression of genes associated with T cell exhaustion and TCR signaling repression. Sequencing of TIL TCRs also revealed an increased T cell repertoire diversity within targeted Vß T cell subsets, suggesting clonal revival of tumor T cell responses. These immunological and antitumor effects in mice were recapitulated in studies of STAR0602 in nonhuman primates and human ex vivo models, wherein STAR0602 boosted human antigen-specific T cell responses and killing of tumor organoids. Thus, STAR0602 represents a distinct class of T cell-activating molecules with the potential to deliver enhanced antitumor activity in checkpoint inhibitor-refractory settings.
Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Anticorpos/farmacologiaRESUMO
BACKGROUND: In preclinical studies, combining M9241 (a novel immunocytokine containing interleukin (IL)-12 heterodimers) with avelumab (anti-programmed death ligand 1 antibody) resulted in additive or synergistic antitumor effects. We report dose-escalation and dose-expansion results from the phase Ib JAVELIN IL-12 trial investigating M9241 plus avelumab. METHODS: In the dose-escalation part of JAVELIN IL-12 (NCT02994953), eligible patients had locally advanced or metastatic solid tumors; in the dose-expansion part, eligible patients had locally advanced or metastatic urothelial carcinoma (UC) that had progressed with first-line therapy. Patients received M9241 at 4, 8, 12, or 16.8 µg/kg every 4 weeks (Q4W) plus avelumab 10 mg/kg every 2 weeks (Q2W, dose levels (DLs) 1-4) or M9241 16.8 µg/kg Q4W plus avelumab 800 mg once a week for 12 weeks followed by Q2W (DL5/dose expansion). Primary endpoints for the dose-escalation part were adverse events (AEs) and dose-limiting toxicities (DLTs), and those for the dose-expansion part were confirmed best overall response (BOR) per investigator (Response Evaluation Criteria in Solid Tumors V.1.1) and safety. The dose-expansion part followed a two-stage design; 16 patients were enrolled and treated in stage 1 (single-arm part). A futility analysis based on BOR was planned to determine whether stage 2 (randomized controlled part) would be initiated. RESULTS: At data cut-off, 36 patients had received M9241 plus avelumab in the dose-escalation part. All DLs were well tolerated; one DLT occurred at DL3 (grade 3 autoimmune hepatitis). The maximum-tolerated dose was not reached, and DL5 was declared the recommended phase II dose, considering an observed drug-drug interaction at DL4. Two patients with advanced bladder cancer (DL2 and DL4) had prolonged complete responses. In the dose-expansion part, no objective responses were recorded in the 16 patients with advanced UC; the study failed to meet the criterion (≥3 confirmed objective responses) to initiate stage 2. Any-grade treatment-related AEs occurred in 15 patients (93.8%), including grade ≥3 in 8 (50.0%); no treatment-related deaths occurred. Exposures for avelumab and M9241 concentrations were within expected ranges. CONCLUSIONS: M9241 plus avelumab was well tolerated at all DLs, including the dose-expansion part, with no new safety signals. However, the dose-expansion part did not meet the predefined efficacy criterion to proceed to stage 2.
Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Medicina Estatal , Neoplasias da Bexiga Urinária/tratamento farmacológico , Interleucina-12RESUMO
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced cancers. However, activation of the immune system can occasionally cause life-threatening toxicity involving critical organs. Induction of immune-mediated toxicity is a significant concern for patients with thymic epithelial tumors (TETs) due to defects in immune tolerance. An increased risk of skeletal and cardiac muscle inflammation following treatment with ICIs is well recognized in patients with advanced TETs. However, uncommon musculoskeletal and rheumatic complications can also occur. The cases presented in this report highlight the spectrum of presentation of immune-mediated, joint-predominant musculoskeletal adverse events in patients with advanced TETs treated with ICIs, including polymyalgia rheumatica-like illness and inflammatory arthritis.
Assuntos
Miosite , Neoplasias Epiteliais e Glandulares , Neoplasias , Polimialgia Reumática , Neoplasias do Timo , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/efeitos adversos , Miosite/induzido quimicamente , Neoplasias/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Polimialgia Reumática/tratamento farmacológico , Polimialgia Reumática/etiologia , Neoplasias do Timo/tratamento farmacológicoRESUMO
PURPOSE: Bintrafusp alfa is a bifunctional agent consisting of an anti-human PD-L1 antibody linked to two TGFßRII. It is designed to act both as a checkpoint inhibitor and to 'trap' TGFß in the tumor microenvironment. Phase I and II clinical studies demonstrated clinical activity in patients with a range of human papillomavirus (HPV)-associated cancers. The purpose of the studies reported here was the interrogation of various aspects of the peripheral immunome in patients with HPV-associated cancers, both prior to and early in the treatment regimen of bintrafusp alfa to better understand the mode of action of the agent and to help define which patients are more likely to benefit from bintrafusp alfa treatment. PATIENTS AND METHODS: The peripheral immunome of patients (n=65) with HPV+ malignancies was analyzed both prior to treatment with bintrafusp alfa and day 14 post-treatment for levels and changes in (1) 158 different immune cell subsets, (2) multiple plasma soluble factors including analytes reflecting immune stimulatory and inhibitory status, (3) complete blood counts, and in a subset of patients (4) TCR diversity and (5) HPV-specific T-cell responses. RESULTS: Interrogation of the peripheral immunome prior to bintrafusp alfa treatment revealed several factors that associated with clinical response, including (1) higher levels of sCD27:sCD40L ratios, (2) lower levels of TGFß1 and 12 additional factors associated with tumor mesenchymalization, and (3) higher CD8+ T cell:MDSC ratios. Analysis at 2 weeks post bintrafusp alfa revealed that eventual clinical responders had fewer increases in IL-8 levels and the neutrophil to lymphocyte ratio, and higher levels of HPV-16 specific CD8+ T cells. This study also provided information concerning differences in the peripheral immunome for patients who were naïve versus refractory to prior checkpoint inhibition therapy. While preliminary, two multivariate models developed predicted clinical benefit with 76%-91% accuracy. CONCLUSIONS: These studies add insight into the mechanism of action of bintrafusp alfa and provide evidence that the interrogation of both cellular and soluble components of the peripheral immunome of patients with HPV-associated malignancies, either prior to or early in the therapeutic regimen, can provide information as to which patients are more likely to benefit with bintrafusp alfa therapy.
Assuntos
Alphapapillomavirus , Neoplasias , Infecções por Papillomavirus , Linfócitos T CD8-Positivos/patologia , Humanos , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Papillomaviridae , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/patologia , Microambiente TumoralRESUMO
BACKGROUND: FOLFOX plus bevacizumab is a standard of care (SOC) for first-line treatment of microsatellite-stable metastatic colorectal cancer (MSS mCRC). This study randomized patients to SOC or SOC plus avelumab (anti-PD-L1) plus CEA-targeted vaccine. METHODS: Patients with untreated MSS mCRC enrolled to a lead-in arm assessing safety of SOC + immuno-oncology agents (IO). Next, patients were randomized to SOC or SOC + IO. The primary endpoint was progression-free survival (PFS). Multiple immune parameters were analyzed. RESULTS: Six patients enrolled to safety lead-in, 10 randomized to SOC, and 10 to SOC + IO. There was no difference in median PFS comparing SOC versus SOC + IO (8.8 months (95% CI: 3.3-17.0 months) versus 10.1 months (95% CI: 3.6-16.1 months), respectively; hazard ratio 1.061 [P = .91; 95% CI: 0.380-2.966]). The objective response rate was 50% in both arms. Of patients analyzed, most (8/11) who received SOC + IO developed multifunctional CD4+/CD8+ T-cell responses to cascade antigens MUC1 and/or brachyury, compared to 1/8 who received SOC alone (P = .020). We detected post-treatment changes in immune parameters that were distinct to the SOC and SOC + IO treatment arms. Accrual closed after an unplanned analysis predicted a low likelihood of meeting the primary endpoint. CONCLUSIONS: SOC + IO generated multifunctional MUC1- and brachyury-specific CD4+/CD8+ T cells despite concurrent chemotherapy. Although a tumor-directed immune response is necessary for T-cell-mediated antitumor activity, it was not sufficient to improve PFS. Adding agents that increase the number and function of effector cells may be required for clinical benefit.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bevacizumab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Imunoterapia , Vacinas/uso terapêuticoRESUMO
Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Knockout , Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-myc/genéticaRESUMO
BACKGROUND: Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1-, E2b-] targeting three TAAs-prostate-specific antigen (PSA), brachyury, and MUC-1-has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial-mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. METHODS: Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. RESULTS: Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65-1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. CONCLUSIONS: Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. TRIAL REGISTRATION NUMBER: NCT03481816.
Assuntos
Adenoviridae/imunologia , Vacinas Anticâncer/uso terapêutico , Proteínas Fetais/imunologia , Calicreínas/imunologia , Mucina-1/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Proteínas com Domínio T/imunologia , Vacinas Combinadas/uso terapêutico , Adenoviridae/genética , Idoso , Idoso de 80 Anos ou mais , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Proteínas Fetais/genética , Vetores Genéticos , Humanos , Calicreínas/genética , Masculino , Pessoa de Meia-Idade , Mucina-1/genética , Intervalo Livre de Progressão , Antígeno Prostático Específico/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/imunologia , Proteínas com Domínio T/genética , Fatores de Tempo , Vacinação , Eficácia de Vacinas , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas ViraisRESUMO
While vaccines directed against the SARS-CoV-2 spike protein will have varying degrees of effectiveness in preventing SARS-CoV-2 infections, the severity of infection will be determined by multiple host factors including the ability of immune cells to lyse virus-infected cells. This review will discuss the complexity of both adaptive and innate immunomes and how a flow-based assay can detect up to 158 distinct cell subsets in the periphery. This assay has been employed to show the effect of age on differences in specific immune cell subsets, and the differences in the immunome between healthy donors and age-matched cancer patients. Also reviewed are the numerous soluble factors, in addition to cytokines, that may vary in the pathogenesis of SARS-CoV-2 infections and may also be employed to help define the effectiveness of a given vaccine or other antiviral agents. Various steroids have been employed in the management of autoimmune adverse events in cancer patients receiving immunotherapeutics and may be employed in the management of SARS-CoV-2 infections. The influence of steroids on multiple immune cells subsets will also be discussed.
Assuntos
Imunidade Adaptativa/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Fatores Etários , Antígeno B7-H1/imunologia , Ligante de CD40/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Citocinas/imunologia , Suscetibilidade a Doenças , Glucocorticoides/uso terapêutico , Granzimas/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunossenescência/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/imunologia , Proteoma , SARS-CoV-2 , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologiaRESUMO
LESSONS LEARNED: Modified vaccinia Ankara-Bavarian Nordic (MVA-BN)-Brachyury followed by fowlpox virus-BN-Brachyury was well tolerated upon administration to patients with advanced cancer. Sixty-three percent of patients developed CD4+ and/or CD8+ T-cell responses to brachyury after vaccination. BN-Brachyury vaccine also induced T-cell responses against CEA and MUC1, which are cascade antigens, that is, antigens not encoded in the vaccines. BACKGROUND: Brachyury, a transcription factor, plays an integral role in the epithelial-mesenchymal transition, metastasis, and tumor resistance to chemotherapy. It is expressed in many tumor types, and rarely in normal tissues, making it an ideal immunologic target. Bavarian Nordic (BN)-Brachyury consists of vaccination with modified vaccinia Ankara (MVA) priming followed by fowlpox virus (FPV) boosting, each encoding transgenes for brachyury and costimulatory molecules. METHODS: Patients with metastatic solid tumors were treated with two monthly doses of MVA-brachyury s.c., 8 × 108 infectious units (IU), followed by FPV-brachyury s.c., 1 × 109 IU, for six monthly doses and then every 3 months for up to 2 years. The primary objective was to determine safety and tolerability. RESULTS: Eleven patients were enrolled from March 2018 to July 2018 (one patient was nonevaluable). No dose-limiting toxicities were observed. The most common treatment-related adverse event was grade 1/2 injection-site reaction observed in all patients. Best overall response was stable disease in six patients, and the 6-month progression-free survival rate was 50%. T cells against brachyury and cascade antigens CEA and MUC1 were detected in the majority of patients. CONCLUSION: BN-Brachyury vaccine is well tolerated and induces immune responses to brachyury and cascade antigens and demonstrates some evidence of clinical benefit.
Assuntos
Vírus da Varíola das Aves Domésticas , Neoplasias , Vacínia , Animais , Proteínas Fetais , Humanos , Neoplasias/terapia , Proteínas com Domínio T/genética , Vaccinia virus/genéticaRESUMO
BACKGROUND: Thymic epithelial tumors are PD-L1-expressing tumors of thymic epithelial origin characterized by varying degrees of lymphocytic infiltration and a predisposition towards development of paraneoplastic autoimmunity. PD-1-targeting antibodies have been evaluated, largely in patients with thymic carcinoma. We sought to evaluate the efficacy and safety of the anti-PD-L1 antibody, avelumab (MSB0010718C), in patients with relapsed, advanced thymic epithelial tumors and conduct correlative immunological studies. METHODS: Seven patients with thymoma and one patient with thymic carcinoma were enrolled in a phase I, dose-escalation trial of avelumab (MSB0010718C), and treated with avelumab at doses of 10 mg/kg to 20 mg/kg every 2 weeks until disease progression or development of intolerable side effects. Tissue and blood immunological analyses were conducted. RESULTS: Two of seven (29%) patients with thymoma had a confirmed Response Evaluation Criteria in Solid Tumors-defined partial response, two (29%) had an unconfirmed partial response and three patients (two thymoma; one thymic carcinoma) had stable disease (43%). Three of four responses were observed after a single dose of avelumab. All responders developed immune-related adverse events that resolved with immunosuppressive therapy. Only one of four patients without a clinical response developed immune-related adverse events. Responders had a higher absolute lymphocyte count, lower frequencies of B cells, regulatory T cells, conventional dendritic cells, and natural killer cells prior to therapy. CONCLUSION: These results demonstrate anti-tumor activity of PD-L1 inhibition in patients with relapsed thymoma accompanied by a high frequency of immune-related adverse events. Pre-treatment immune cell subset populations differ between responders and non-responders. TRIAL REGISTRATION: ClinicalTrials.gov - NCT01772004 . Date of registration - January 21, 2013.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Timoma/tratamento farmacológico , Neoplasias do Timo/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Biomarcadores , Biomarcadores Tumorais , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Timoma/diagnóstico , Timoma/etiologia , Timoma/mortalidade , Neoplasias do Timo/diagnóstico , Neoplasias do Timo/etiologia , Neoplasias do Timo/mortalidade , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
Mutated mitogen-activated protein kinase (MAPK) pathway components promote tumor survival, proliferation, and immune evasion in solid tumors. MAPK mutations occur in hematologic cancers as well, but their role is less clear and few models are available to study this. We developed an in vivo model of disseminated BRAFV600E B-cell leukemia to determine the effects of this mutation on tumor development and immune evasion. Mice with B-cell-restricted BRAFV600E expression crossed with the Eµ-TCL1 model of chronic lymphocytic leukemia (CLL) developed leukemia significantly earlier (median, 4.9 vs 8.1 months; P < .001) and had significantly shorter lifespan (median, 7.3 vs 12.1 months; P < .001) versus BRAF wild-type counterparts. BRAFV600E expression did not affect B-cell proliferation but reduced spontaneous apoptosis. BRAFV600E-mutant leukemia produced greater T-cell effects, evidenced by exhaustion immunophenotype and CD44+ T-cell percentage, as well as increased expression of PD-L1 on CD11b+ cells. Results were confirmed in syngeneic mice engrafted with BRAFV600E leukemia cells. Furthermore, a BRAFV600E-expressing CLL cell line more strongly inhibited anti-CD3/CD28-induced T-cell proliferation, which was reversed by BRAFV600E inhibition. These results demonstrate the immune-suppressive impact of BRAFV600E in B-cell leukemias and introduce a new model to develop rational combination strategies targeting both tumor cells and tumor-mediated immune evasion.
RESUMO
A subset of patients with chronic lymphocytic leukemia (CLL) and nearly all patients with classic hairy cell leukemia (HCL) harbor somatic BRAF activating mutations. However, the pathological role of activated BRAF in B-cell leukemia development and progression remains unclear. In addition, although HCL patients respond well to the BRAFV600E inhibitor vemurafenib, relapses are being observed, suggesting the development of drug resistance in patients with this mutation. To investigate the biological role of BRAFV600E in B-cell leukemia, we generated a CLL-like B-cell line, OSUCLL, with doxycycline-inducible BRAFV600E expression. Microarray and real-time PCR analysis showed that ABCB1 mRNA is upregulated in these cells, and P-glycoprotein (P-gp) expression as well as function were confirmed by immunoblot and rhodamine exclusion assays. Additionally, pharmacological inhibition of BRAFV600E and MEK alleviated the BRAFV600E-induced ABCB1/P-gp expression. ABCB1 reporter assays and gel shift assays demonstrated that AP-1 activity is crucial in this mechanism. This study, uncovers a pathological role for BRAFV600E in B-cell leukemia, and provides further evidence that combination strategies with inhibitors of BRAFV600E and MEK can be used to delay disease progression and occurrence of resistance.
RESUMO
PURPOSE: Overexpression of DNA 5'-cytosine-methyltransferase 3A (DNMT3A), which silences genes including tumor suppressor genes (TSG), is involved in many cancers. Therefore, we examined whether the transcriptional deregulation of RB/MDM2 pathway was responsible for DNMT3A overexpression and analyzed the therapeutic potential of MDM2 antagonist for reversing aberrant DNA methylation status in lung cancer. EXPERIMENTAL DESIGN: The regulation of DNMT3A expression and TSG methylation status by RB/MDM2 was assessed in cancer cell lines and patients. The effects of Nutlin-3, an MDM2 antagonist, on tumor growth in relation to DNMT3A expression and TSG methylation status were examined by xenograft model. RESULTS: We found that RB suppressed DNMT3A promoter activity and mRNA/protein expression through binding with E2F1 protein to the DNMT3A promoter, leading to the decrease of methylation level globally and TSG specifically. In addition, MDM2 dramatically induced DNMT3A expression by negative control over RB. In clinical study, MDM2 overexpression inversely correlated with RB expression, while positively associating with overexpression of DNMT3A in samples from patients with lung cancer. Patients with high MDM2 and low RB expression showed DNMT3A overexpression with promoter hypermethylation in TSGs. Treatment with Nutlin-3, an MDM2 antagonist, significantly suppressed tumor growth and reduced DNA methylation level of TSGs through downregulation of DNMT3A expression in xenograft studies. CONCLUSIONS: This study provides the first cell, animal, and clinical evidence that DNMT3A is transcriptionally repressed, in part, by RB/E2F pathway and that the repression could be attenuated by MDM2 overexpression. MDM2 is a potent target for anticancer therapy to reverse aberrant epigenetic status in cancers.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , Genes do Retinoblastoma , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Feminino , Expressão Gênica , Humanos , Imidazóis/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Piperazinas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Transcrição GênicaRESUMO
Uptake of docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) improves the treatment of cancer and reduces tumor-associated macrophage count. However, the mechanism of this relationship is still unclear. In this study, macrophages enhanced gastric cancer cell migration ability and induced the differentially expressed matrix metalloproteinase genes (MMP1, MMP3 and MMP10) of N87 as identified by polymerase chain reaction array. Furthermore, DHA and EPA inhibited macrophage-enhanced cancer cell migration and attenuated MMP10 at both the RNA and protein level. The suppression of MMP10 expression was further verified by zymography and antibody blocking experiments. Additionally, DHA and EPA attenuated expression of macrophage-activated extracellular-signal-regulated kinase (ERK) and signal transducers and activators of transcription 3 (STAT3) in cancer cells. Attenuation was verified by demonstrating blockade with specific inhibitors and thereby increased MMP10 expression. Accordingly, we hypothesized that macrophage enhances cancer cell migration through ERK and STAT3 phosphorylation and subsequent increased MMP10 expression and that DHA and EPA could attenuate these signals. These findings not only explain the beneficial effects of DHA/EPA, but also point to ERK/STAT3/MMP10 as the potential targets for gastric cancer treatment.
Assuntos
Movimento Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Macrófagos/patologia , Metaloproteinase 10 da Matriz/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 10 da Matriz/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
BACKGROUND: In the current study, the authors sought to identify the molecular mechanisms underlying the chemoresistance of lung cancer stem or initiation cells (cancer stem cells). METHODS: A549 lung cancer cells before and after selective enrichment of a subpopulation of cancer stem cells were treated with superoxide and traditional chemotherapeutics to determine their sensitivity or resistance to these cytotoxic agents. Apoptotic activity was measured using a variety of fluorescence-based and biochemical techniques. Specific pathways involved in the chemoresistance of cancer stem cell-enriched lung cancer cells were analyzed with Western blotting and pharmacologic targeting therapy in a xenograft model. RESULTS: Lung cancer stem cells exhibited significantly decreased apoptotic response to treatment with superoxide, cisplatin, gemcitabine, or a combination of cisplatin and gemcitabine compared with control A549 cells. Apoptotic resistance was mediated through the inactivation of caspase-9 and caspase-3. Increased activation of p38MAPK, MAPKAPK2, and Hsp27 was observed in lung cancer stem cells compared with control A549 cells both before and after exposure to superoxide and chemotoxic agents. In a mouse model of lung cancer, chemotherapy-induced cells increased in the antiapoptosis pathway, and quercetin, an inhibitor of Hsp27, combined with traditional chemotherapy was effective in blocking the pathway and in the treatment of lung tumors in vivo. CONCLUSIONS: The authors' data demonstrate that lung cancer stem cells have elevated levels of activated Hsp27 upon treatment with superoxide and traditional chemotherapy. When combined with chemotoxic agents, blockage of Hsp27 decreased the survival of lung cancer stem cells, which otherwise were resistant to traditional chemotherapy.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Quercetina/farmacologia , Transdução de Sinais , Superóxidos/farmacologiaRESUMO
Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspase 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X(L), Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.