Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Rep ; 14(1): 13309, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858389

RESUMO

Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.


Assuntos
Neoplasias Encefálicas , Análise Espectral Raman , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Análise Espectral Raman/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Meningioma/diagnóstico , Meningioma/patologia , Glioblastoma/patologia , Glioblastoma/diagnóstico , Glioblastoma/cirurgia , Adulto , Aprendizado de Máquina , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
2.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339340

RESUMO

BACKGROUND: Clinical, histopathological, and imaging variables have been associated with prognosis in patients with glioblastoma (GBM). We aimed to develop a multiparametric radiogenomic model incorporating MRI texture features, demographic data, and histopathological tumor biomarkers to predict prognosis in patients with GBM. METHODS: In this retrospective study, patients were included if they had confirmed diagnosis of GBM with histopathological biomarkers and pre-operative MRI. Tumor segmentation was performed, and texture features were extracted to develop a predictive radiomic model of survival (<18 months vs. ≥18 months) using multivariate analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regularization to reduce the risk of overfitting. This radiomic model in combination with clinical and histopathological data was inserted into a backward stepwise logistic regression model to assess survival. The diagnostic performance of this model was reported for the training and external validation sets. RESULTS: A total of 116 patients were included for model development and 40 patients for external testing validation. The diagnostic performance (AUC/sensitivity/specificity) of the radiomic model generated from seven texture features in determination of ≥18 months survival was 0.71/69.0/70.3. Three variables remained as independent predictors of survival, including radiomics (p = 0.004), age (p = 0.039), and MGMT status (p = 0.025). This model yielded diagnostic performance (AUC/sensitivity/specificity) of 0.77/81.0/66.0 (training) and 0.89/100/78.6 (testing) in determination of survival ≥ 18 months. CONCLUSIONS: Results show that our radiogenomic model generated from radiomic features at baseline MRI, age, and MGMT status can predict survival ≥ 18 months in patients with GBM.

3.
Sci Adv ; 9(41): eadg3754, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824614

RESUMO

The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.


Assuntos
Cromatina , Multiômica , Humanos , Cromatina/genética , Cromatina/metabolismo , Sequências Reguladoras de Ácido Nucleico , Diferenciação Celular/genética , Encéfalo/metabolismo
4.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733448

RESUMO

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Assuntos
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animais , Humanos , Camundongos , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicação Parácrina
5.
Neurooncol Adv ; 5(1): vdad085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554222

RESUMO

Background: Mutations in mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2) are associated with microsatellite instability and a hypermutator phenotype in numerous systemic cancers, and germline MMR mutations have been implicated in multi-organ tumor syndromes. In gliomas, MMR mutations can function as an adaptive response to alkylating chemotherapy, although there are well-documented cases of germline and sporadic mutations, with detrimental effects on patient survival. Methods: The clinical, pathologic, and molecular features of 18 IDH-mutant astrocytomas and 20 IDH-wild-type glioblastomas with MMR mutations in the primary tumor were analyzed in comparison to 361 IDH-mutant and 906 IDH-wild-type tumors without MMR mutations. In addition, 12 IDH-mutant astrocytomas and 18 IDH-wild-type glioblastomas that developed MMR mutations between initial presentation and tumor recurrence were analyzed in comparison to 50 IDH-mutant and 104 IDH-wild-type cases that remained MMR-wild-type at recurrence. Results: In both IDH-mutant astrocytoma and IDH-wild-type glioblastoma cohorts, the presence of MMR mutation in primary tumors was associated with significantly higher tumor mutation burden (TMB) (P < .0001); however, MMR mutations only resulted in worse overall survival in the IDH-mutant astrocytomas (P = .0069). In addition, gain of MMR mutation between the primary and recurrent surgical specimen occurred more frequently with temozolomide therapy (P = .0073), and resulted in a substantial increase in TMB (P < .0001), higher grade (P = .0119), and worse post-recurrence survival (P = .0022) in the IDH-mutant astrocytoma cohort. Conclusions: These results suggest that whether present initially or in response to therapy, MMR mutations significantly affect TMB but appear to only influence the clinical outcome in IDH-mutant astrocytoma subsets.

6.
J Neuropathol Exp Neurol ; 82(10): 845-852, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37550258

RESUMO

Homozygous deletion of CDKN2A/B is currently considered a molecular signature for grade 4 in IDH-mutant astrocytomas, irrespective of tumor histomorphology. The 2021 WHO Classification of CNS Tumors does not currently include grading recommendations for histologically lower-grade (grade 2-3) IDH-mutant astrocytoma with CDKN2A mutation or other CDKN2A alterations, and little is currently known about the prognostic implications of these alternative CDKN2A inactivating mechanisms. To address this, we evaluated a cohort of institutional and publicly available IDH-mutant astrocytomas, 15 with pathogenic mutations in CDKN2A, 47 with homozygous CDKN2A deletion, and 401 with retained/wildtype CDKN2A. The IDH-mutant astrocytomas with mutant and deleted CDKN2A had significantly higher overall copy number variation compared to those with retained/wildtype CDKN2A, consistent with more aggressive behavior. Astrocytoma patients with CDKN2A mutation had significantly worse progression-free (p = 0.0025) and overall survival (p < 0.0001) compared to grade-matched patients with wildtype CDKN2A, but statistically equivalent progression-free survival and overall survival outcomes to patients with CDKN2A deletion. No significant survival difference was identified between CDKN2A mutant cases with or without loss of the second allele. These findings suggest that CDKN2A mutation has a detrimental effect on survival in otherwise lower-grade IDH-mutant astrocytomas, similar to homozygous CDKN2A deletion, and should be considered for future grading schemes.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Prognóstico , Neoplasias Encefálicas/patologia , Homozigoto , Variações do Número de Cópias de DNA , Deleção de Sequência , Isocitrato Desidrogenase/genética , Astrocitoma/patologia , Mutação/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética
7.
Neurooncol Adv ; 5(1): vdad076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476329

RESUMO

Background: Central nervous system (CNS) cancer is the 10th leading cause of cancer-associated deaths for adults, but the leading cause in pediatric patients and young adults. The variety and complexity of histologic subtypes can lead to diagnostic errors. DNA methylation is an epigenetic modification that provides a tumor type-specific signature that can be used for diagnosis. Methods: We performed a prospective study using DNA methylation analysis as a primary diagnostic method for 1921 brain tumors. All tumors received a pathology diagnosis and profiling by whole genome DNA methylation, followed by next-generation DNA and RNA sequencing. Results were stratified by concordance between DNA methylation and histopathology, establishing diagnostic utility. Results: Of the 1602 cases with a World Health Organization histologic diagnosis, DNA methylation identified a diagnostic mismatch in 225 cases (14%), 78 cases (5%) did not classify with any class, and in an additional 110 (7%) cases DNA methylation confirmed the diagnosis and provided prognostic information. Of 319 cases carrying 195 different descriptive histologic diagnoses, DNA methylation provided a definitive diagnosis in 273 (86%) cases, separated them into 55 methylation classes, and changed the grading in 58 (18%) cases. Conclusions: DNA methylation analysis is a robust method to diagnose primary CNS tumors, improving diagnostic accuracy, decreasing diagnostic errors and inconclusive diagnoses, and providing prognostic subclassification. This study provides a framework for inclusion of DNA methylation profiling as a primary molecular diagnostic test into professional guidelines for CNS tumors. The benefits include increased diagnostic accuracy, improved patient management, and refinements in clinical trial design.

8.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37503149

RESUMO

Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.

9.
Neurooncol Adv ; 5(1): vdad069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324217

RESUMO

Background: Isocitrate dehydrogenase (IDH) mutations are thought to represent an early oncogenic event in glioma evolution, found with high penetrance across tumor cells; however, in rare cases, IDH mutation may exist only in a small subset of the total tumor cells (subclonal IDH mutation). Methods: We present 2 institutional cases with subclonal IDH1 R132H mutation. In addition, 2 large publicly available cohorts of IDH-mutant astrocytomas were mined for cases harboring subclonal IDH mutations (defined as tumor cell fraction with IDH mutation ≤0.67) and the clinical and molecular features of these subclonal cases were compared to clonal IDH-mutant astrocytomas. Results: Immunohistochemistry (IHC) performed on 2 institutional World Health Organization grade 4 IDH-mutant astrocytomas revealed only a minority of tumor cells in each case with IDH1 R132H mutant protein, and next-generation sequencing (NGS) revealed remarkably low IDH1 variant allele frequencies compared to other pathogenic mutations, including TP53 and/or ATRX. DNA methylation classified the first tumor as high-grade IDH-mutant astrocytoma with high confidence (0.98 scores). In the publicly available datasets, subclonal IDH mutation was present in 3.9% of IDH-mutant astrocytomas (18/466 tumors). Compared to clonal IDH-mutant astrocytomas (n = 156), subclonal cases demonstrated worse overall survival in grades 3 (P = .0106) and 4 (P = .0184). Conclusions: While rare, subclonal IDH1 mutations are present in a subset of IDH-mutant astrocytomas of all grades, which may lead to a mismatch between IHC results and genetic/epigenetic classification. These findings suggest a possible prognostic role of IDH mutation subclonality, and highlight the potential clinical utility of quantitative IDH1 mutation evaluation by IHC and NGS.

10.
Acta Neuropathol Commun ; 11(1): 73, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138345

RESUMO

Molecular characterization of gliomas has uncovered genomic signatures with significant impact on tumor diagnosis and prognostication. CDKN2A is a tumor suppressor gene involved in cell cycle control. Homozygous deletion of the CDKN2A/B locus has been implicated in both gliomagenesis and tumor progression through dysregulated cell proliferation. In histologically lower grade gliomas, CDKN2A homozygous deletion is associated with more aggressive clinical course and is a molecular marker of grade 4 status in the 2021 WHO diagnostic system. Despite its prognostic utility, molecular analysis for CDKN2A deletion remains time consuming, expensive, and is not widely available. This study assessed whether semi-quantitative immunohistochemistry for expression of p16, the protein product of CDKN2A, can serve as a sensitive and a specific marker for CDKN2A homozygous deletion in gliomas. P16 expression was quantified by immunohistochemistry in 100 gliomas, representing both IDH-wildtype and IDH-mutant tumors of all grades, using two independent pathologists' scores and QuPath digital pathology analysis. Molecular CDKN2A status was determined using next-generation DNA sequencing, with homozygous CDKN2A deletion detected in 48% of the tumor cohort. Classifying CDKN2A status based on p16 tumor cell expression (0-100%) demonstrated robust performance over a wide range of thresholds, with receiver operating characteristic curve area of 0.993 and 0.997 (blinded and unblinded pathologist p16 scores, respectively) and 0.969 (QuPath p16 score). Importantly, in tumors with pathologist-scored p16 equal to or less than 5%, the specificity for predicting CDKN2A homozygous deletion was 100%; and in tumors with p16 greater than 20%, specificity for excluding CDKN2A homozygous deletion was also 100%. Conversely, tumors with p16 scores of 6-20% represented gray zone with imperfect correlation to CDKN2A status. The findings indicate that p16 immunohistochemistry is a reliable surrogate marker of CDKN2A homozygous deletion in gliomas, with recommended p16 cutoff scores of ≤ 5% for confirming and > 20% for excluding biallelic CDKN2A loss.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Glioma , Humanos , Imuno-Histoquímica , Inibidor p16 de Quinase Dependente de Ciclina/genética , Homozigoto , Deleção de Sequência , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Deleção de Genes
11.
Nat Commun ; 14(1): 1839, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012245

RESUMO

Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.


Assuntos
Neoplasias Encefálicas , Carcinoma Hepatocelular , Glioblastoma , Neoplasias Hepáticas , Camundongos , Animais , Glioblastoma/patologia , Monócitos/metabolismo , Neutrófilos/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Hepáticas/metabolismo
12.
Cancer Res Commun ; 3(1): 130-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968223

RESUMO

Purpose: The treatment of glioblastoma (GBM) poses challenges. The use of immune checkpoint inhibition (ICI) has been disappointing as GBM is characterized by low mutational burden and low T-cell infiltration. The combination of ICI with other treatment modalities may improve efficacy. Patient and Methods: Patients with recurrent GBM were treated with avelumab, a human IgG1 antibody directed against PD-L1 (part A), or avelumab within a week after laser interstitial thermal therapy (LITT) and continuation of avelumab (part B). Bevacizumab was allowed to be combined with ICI to spare steroid use. The primary objective was to characterize the tolerability and safety of the regimens. The secondary objectives included overall survival, progression-free survival (PFS), signatures of plasma analytes, and immune cells. Results: A total of 12 patients (median age 64; range, 37-73) enrolled, five in part A and seven in part B. Two serious adverse events occurred in the same patient, LITT treated, not leading to death. The median survival from enrollment was 13 months [95% confidence interval (CI), 4-16 months] with no differences for part A or B. The median PFS was 3 months (95% CI, 1.5-4.5 months). The decrease in MICA/MICB, γδT cells, and CD4+ T cell EMRA correlated with prolonged survival. Conclusions: Avelumab was generally well tolerated. Adding bevacizumab to ICI may be beneficial by lowering cytokine and immune cell expression. The development of this combinatorial treatment warrants further investigation. Exploring the modulation of adaptive and innate immune cells and plasma analytes as biomarker signatures may instruct future studies in this dismal refractory disease. Significance: Our phase I of PD-L1 inhibition combined with LITT and using bevacizumab to spare steroids had a good safety profile for recurrent GBM. Developing combinatory treatment may help outcomes. In addition, we found significant immune modulation of cytokines and immune cells by bevacizumab, which may enhance the effect of ICI.


Assuntos
Glioblastoma , Humanos , Pessoa de Meia-Idade , Bevacizumab/efeitos adversos , Glioblastoma/tratamento farmacológico , Anticorpos Monoclonais , Fator A de Crescimento do Endotélio Vascular , Antígeno B7-H1
13.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831380

RESUMO

PURPOSE: The T2-FLAIR mismatch sign has shown promise in determining IDH mutant 1p/19q non-co-deleted gliomas with a high specificity and modest sensitivity. To develop a multi-parametric radiomic model using MRI to predict 1p/19q co-deletion status in patients with newly diagnosed IDH1 mutant glioma and to perform a comparative analysis to T2-FLAIR mismatch sign+. METHODS: In this retrospective study, patients with diagnosis of IDH1 mutant gliomas with known 1p/19q status who had preoperative MRI were included. T2-FLAIR mismatch was evaluated independently by two board-certified neuroradiologists. Texture features were extracted from glioma segmentation of FLAIR images. eXtremeGradient Boosting (XGboost) classifiers were used for model development. Leave-one-out-cross-validation (LOOCV) and external validation performances were reported for both the training and external validation sets. RESULTS: A total of 103 patients were included for model development and 18 patients for external testing validation. The diagnostic performance (sensitivity/specificity/accuracy) in the determination of the 1p/19q co-deletion status was 59%/83%/67% (training) and 62.5%/70.0%/66.3% (testing) for the T2-FLAIR mismatch sign. This was significantly improved (p = 0.04) using the radiomics model to 77.9%/82.8%/80.3% (training) and 87.5%/89.9%/88.8% (testing), respectively. The addition of radiomics as a computer-assisted tool resulted in significant (p = 0.02) improvement in the performance of the neuroradiologist with 13 additional corrected cases in comparison to just using the T2-FLAIR mismatch sign. CONCLUSION: The proposed radiomic model provides much needed sensitivity to the highly specific T2-FLAIR mismatch sign in the determination of the 1p/19q non-co-deletion status and improves the overall diagnostic performance of neuroradiologists when used as an assistive tool.

14.
Cancer Immunol Immunother ; 72(6): 1893-1901, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36707424

RESUMO

PURPOSE: While immune checkpoint inhibitors (ICI) have had success with various malignancies, their efficacy in brain cancer is still unclear. Retrospective and prospective studies using PD-1 inhibitors for recurrent glioblastoma (GBM) have not established survival benefit. This study evaluated if ICI may be effective for select patients with recurrent GBM. METHODS: This was a single-center retrospective study of adult patients diagnosed with first recurrence GBM and received pembrolizumab or nivolumab with or without concurrent bevacizumab. Archival tissue was used for immunohistochemistry (IHC) and targeted DNA next-generation sequencing (NGS) analysis. RESULTS: Median overall survival (mOS) from initial diagnosis was 24.5 months (range 10-42). mOS from onset of ICI was 10 months (range 1-31) with 75% surviving > 6 months and 46% > 12 months. Additional IHC analysis on tumors from eight patients demonstrated a trend of longer survival after ICI for those with elevated PD-L1 expression. NGS of samples from 15 patients identified EGFR amplification at initial diagnosis and at any time point to be associated with worse survival after ICI (HR 12.2, 95% CI 1.37-108, p = 0.025 and HR 3.92, 95% CI 1.03-14.9, p = 0.045, respectively). This significance was corroborated with previously tested EGFR amplification via in situ hybridization. CONCLUSION: ICI did not extend overall survival for recurrent GBM. However, molecular sequencing identified EGFR amplification as associated with worse survival. Prospective studies can validate if EGFR amplification is a biomarker of ICI resistance and determine if its use can stratify responders from non-responders.


Assuntos
Antineoplásicos Imunológicos , Glioblastoma , Adulto , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Retrospectivos , Antineoplásicos Imunológicos/uso terapêutico , Estudos Prospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores ErbB/genética
15.
Nat Commun ; 13(1): 7671, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509746

RESUMO

Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.


Assuntos
Neuroglia , Oligodendroglia , Criança , Humanos , Neuroglia/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/genética , Neurogênese/genética
17.
Acta Neuropathol Commun ; 10(1): 149, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274170

RESUMO

The pathophysiology of epilepsy underlies a complex network dysfunction between neurons and glia, the molecular cell type-specific contributions of which remain poorly defined in the human disease. In this study, we validated a method that simultaneously isolates neuronal (NEUN +), astrocyte (PAX6 + NEUN-), and oligodendroglial progenitor (OPC) (OLIG2 + NEUN-) enriched nuclei populations from non-diseased, fresh-frozen human neocortex and then applied it to characterize the distinct transcriptomes of such populations isolated from electrode-mapped temporal lobe epilepsy (TLE) surgical samples. Nuclear RNA-seq confirmed cell type specificity and informed both common and distinct pathways associated with TLE in astrocytes, OPCs, and neurons. Compared to postmortem control, the transcriptome of epilepsy astrocytes showed downregulation of mature astrocyte functions and upregulation of development-related genes. To gain further insight into glial heterogeneity in TLE, we performed single cell transcriptomics (scRNA-seq) on four additional human TLE samples. Analysis of the integrated TLE dataset uncovered a prominent subpopulation of glia that express a hybrid signature of both reactive astrocyte and OPC markers, including many cells with a mixed GFAP + OLIG2 + phenotype. A further integrated analysis of this TLE scRNA-seq dataset and a previously published normal human temporal lobe scRNA-seq dataset confirmed the unique presence of hybrid glia only in TLE. Pseudotime analysis revealed cell transition trajectories stemming from this hybrid population towards both OPCs and reactive astrocytes. Immunofluorescence studies in human TLE samples confirmed the rare presence of GFAP + OLIG2 + glia, including some cells with proliferative activity, and functional analysis of cells isolated directly from these samples disclosed abnormal neurosphere formation in vitro. Overall, cell type-specific isolation of glia from surgical epilepsy samples combined with transcriptomic analyses uncovered abnormal glial subpopulations with de-differentiated phenotype, motivating further studies into the dysfunctional role of reactive glia in temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Transcriptoma , Neuroglia/patologia , Astrócitos/patologia , RNA Nuclear/metabolismo
18.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139616

RESUMO

(1) Background: Gliomas are the most common primary brain neoplasms accounting for roughly 40−50% of all malignant primary central nervous system tumors. We aim to develop a deep learning-based framework for automated segmentation and prediction of biomarkers and prognosis in patients with gliomas. (2) Methods: In this retrospective two center study, patients were included if they (1) had a diagnosis of glioma with known surgical histopathology and (2) had preoperative MRI with FLAIR sequence. The entire tumor volume including FLAIR hyperintense infiltrative component and necrotic and cystic components was segmented. Deep learning-based U-Net framework was developed based on symmetric architecture from the 512 × 512 segmented maps from FLAIR as the ground truth mask. (3) Results: The final cohort consisted of 208 patients with mean ± standard deviation of age (years) of 56 ± 15 with M/F of 130/78. DSC of the generated mask was 0.93. Prediction for IDH-1 and MGMT status had a performance of AUC 0.88 and 0.62, respectively. Survival prediction of <18 months demonstrated AUC of 0.75. (4) Conclusions: Our deep learning-based framework can detect and segment gliomas with excellent performance for the prediction of IDH-1 biomarker status and survival.

19.
Acta Neuropathol Commun ; 10(1): 115, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978439

RESUMO

Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.


Assuntos
Cromotripsia , Glioma , Adulto , Instabilidade Cromossômica/genética , Glioma/genética , Humanos , Mutação/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA