Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
CRISPR J ; 6(3): 289-301, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37200486

RESUMO

"RNA-templated/directed DNA repair" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed I-SceI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used in cis for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel "RNA-mediated end joining" pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Pequeno RNA não Traduzido , Animais , Precursores de RNA , Sistemas CRISPR-Cas/genética , Edição de Genes , Reparo do DNA/genética , DNA/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453298

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA