Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(30): 20761-20779, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435378

RESUMO

For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six second-life module tests (2.65 kW h and 6.85 kW h) with an NMC-cathode under similar initial conditions were conducted. The temperature (direct at cells/modules and in near field), mass loss, cell/module voltage, and qualitative vent gas composition (Fourier transform infrared (FTIR) and diode laser spectroscopy (DLS) for HF) were measured. The results of the tests showed that the battery TR is accompanied by severe and in some cases violent chemical reactions. In most cases, TR was not accompanied by pre-gassing of the modules. Jet flames up to a length of 5 m and fragment throwing to distances to more than 30 m were detected. The TR of the tested modules was accompanied by significant mass loss of up to 82%. The maximum HF concentration measured was 76 ppm, whereby the measured HF concentrations in the module tests were not necessarily higher than that in the cell stack tests. Subsequently, an explosion of the released vent gas occurred in one of the tests, resulting in the intensification of the negative consequences. According to the evaluation of the gas measurements with regard to toxicity base on the "Acute Exposure Guideline Levels" (AEGL), there is some concern with regards to CO, which may be equally as important to consider as the release of HF.

2.
J Hazard Mater ; 367: 1-7, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30583112

RESUMO

Compressed natural gas (CNG) is a widely used automotive fuel in a variety of countries. In case of a vehicle fire where the safety device also malfunctions, a failure of the CNG automotive cylinder could occur. Such a cylinder failure is associated with severe hazards for the surrounding environment. Firstly, a comprehensive analysis is given below, summarizing various accidents involving CNG automotive cylinders and their consequences. In an extensive experimental program, 21 CNG automotive cylinders with no safety device were tested. Of the 21, burst tests were carried out on 5 Type III and 5 Type IV cylinders. Furthermore, fire tests with 8 Type III and 3 Type IV cylinders were conducted. Apart from cylinder pressure, inner temperature and cylinder mantle temperature, the periphery consequences, such as nearfield blast pressure and fragmentation are documented. The maximum measured overpressure due to a Type III cylinder failure was p = 0.41 bar. Each traceable fragment was georeferenced. All-in-all, fragment throw distances of d > 300 m could be observed. As one key result, it can be stated that the tested Type IV CNG cylinders showed less critical failure behavior then the Type III cylinders under fire impingement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA