Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 507: 110773, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114021

RESUMO

Western diets that are high in saturated fat and sugar disrupt circadian rhythms, induce weight gain, and lead to metabolic diseases including obesity. However, the mechanistic link between altered circadian rhythms and energy homeostasis remains poorly understood. In C57BL/6J mice, consuming a Western diet for 16 weeks significantly reduced food intake (at zeitgeber 12-16), in association with decreases in hypothalamic expression of the orexigenic neuropeptides, neuropeptide Y (Npy) and agouti-related peptide (AgRP). To examine the acute effects of the most prevalent saturated fatty acid in a Western diet, palmitate, and the role of the core clock gene, Bmal1, in the regulation of hypothalamic feeding neuropeptides, we used heterogeneous and clonal BMAL1 knockout (KO) immortalized hypothalamic cell lines, expressing specific neuropeptides, derived from male (M) and female (F) mice. Both mHypoA-BMAL1-KO/F and mHypoA-BMAL1-KO/M cells demonstrated a loss of circadian rhythmicity in expression of the clock gene, Per2, as compared to wild-type (control) cultures. Loss of BMAL1 also altered the time-dependent expression of Npy and proopiomelanocortin, and disrupted AgRP rhythmicity. Furthermore, palmitate increased BMAL1 binding to the Npy promotor region, and palmitate treatment (50 µM for 24 h) stimulated Npy expression in a BMAL1-dependent manner in both heterogeneous and clonal NPY-expressing female-derived cell models. The results of this study demonstrate that circadian expression of Bmal1 serves as a mechanistic link between Western diet- and palmitate-induced disruptions of the normal rhythmic patterns in hypothalamic feeding-related neuropeptides.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Dieta Ocidental , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Palmitatos/farmacologia , Fatores de Transcrição ARNTL/genética , Animais , Células Cultivadas , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/metabolismo
2.
Am J Physiol Endocrinol Metab ; 315(2): E133-E140, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631363

RESUMO

The brain, specifically the hypothalamus, controls whole body energy and glucose homeostasis through neurons that synthesize specific neuropeptides, whereas hypothalamic dysfunction is linked directly to insulin resistance, obesity, and type 2 diabetes mellitus. Nutrient excess, through overconsumption of a Western or high-fat diet, exposes the hypothalamus to high levels of free fatty acids, which induces neuroinflammation, endoplasmic reticulum stress, and dysregulation of neuropeptide synthesis. Furthermore, exposure to a high-fat diet also disrupts normal circadian rhythms, and conversely, clock gene knockout models have symptoms of metabolic disorders. While whole brain/animal studies have provided phenotypic end points and important clues to the genes involved, there are still major gaps in our understanding of the intracellular pathways and neuron-specific components that ultimately control circadian rhythms and energy homeostasis. Because of its complexity and heterogeneous nature, containing a diverse mix cell types, it is difficult to dissect the critical hypothalamic components involved in these processes. Of significance, we have the capacity to study these individual components using an extensive collection of both embryonic- and adult-derived, immortalized hypothalamic neuronal cell lines from rodents. These defined neuronal cell lines have been used to examine the impact of nutrient excess, such as palmitate, on circadian rhythms and neuroendocrine signaling pathways, as well as changes in vital neuropeptides, leading to the development of neuronal inflammation; the role of proinflammatory molecules in this process; and ultimately, restoration of normal signaling, clock gene expression, and neuropeptide synthesis in disrupted states by beneficial anti-inflammatory compounds in defined hypothalamic neurons.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiologia , Ácido Palmítico , Periodicidade , Animais , Humanos
3.
Mol Cell Endocrinol ; 472: 40-49, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29180108

RESUMO

Dietary fats can modulate brain function. How free fatty acids (FFAs) alter hypothalamic pro-opiomelanocortin (POMC) neurons remain undefined. The saturated FFA, palmitate, increased neuroinflammatory and ER stress markers, as well as Pomc mRNA levels, but did not affect insulin signaling, in mHypoA-POMC/GFP-2 neurons. This effect was mediated through the MAP kinases JNK and ERK. Further, the increase in Pomc was dependent on palmitoyl-coA synthesis, but not de novo ceramide synthesis, as inhibition of SPT enhanced palmitate-induced Pomc expression, while methylpalmitate had no effect. While palmitate concomitantly induces neuroinflammation and ER stress, these effects were independent of changes in Pomc expression. Palmitate thus has direct acute effects on Pomc, which appears to be important for negative feedback, but not directly related to neuroinflammation. The monounsaturated FFA oleate completely blocked the palmitate-mediated increase in neuroinflammation, ER stress, and Pomc mRNAs. This study provides insight into the complex central metabolic regulation by FFAs.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Neurônios/patologia , Ácido Oleico/farmacologia , Palmitatos/toxicidade , Pró-Opiomelanocortina/metabolismo , Animais , Biomarcadores/metabolismo , Ceramidas/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Inflamação/patologia , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Palmitoil Coenzima A/metabolismo , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Mol Cell Endocrinol ; 438: 18-26, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208620

RESUMO

Diet-induced obesity can lead to detrimental chronic disorders. The severity of this global epidemic has encouraged ongoing research to characterize the mechanisms underlying obesity and its comorbidities. Recent evidence suggests that saturated fatty acids (SFA) in high-fat diets rapidly generate inflammation in the arcuate nucleus of the hypothalamus (ARC), which centrally regulates whole-body energy homeostasis. Herein, we will review the roles of hypothalamic neurons and resident microglia in the initiation of SFA-induced hypothalamic inflammation. Particularly, we focus on neuronal and microglial free fatty acid-sensing and capacity to produce inflammatory signaling. We also outline a potential role of peripherally-derived monocytes in this inflammation. And finally, we explore synaptic plasticity as a mechanism through which hypothalamic inflammation can modulate ARC circuitry, and thus disrupt energy homeostasis.


Assuntos
Hipotálamo/patologia , Inflamação/patologia , Microglia/patologia , Neurônios/patologia , Animais , Dieta Hiperlipídica , Metabolismo Energético , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA