RESUMO
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Ciclodextrinas/química , Cristalização , Preparações Farmacêuticas , Porosidade , Solubilidade , Estruturas Metalorgânicas/químicaRESUMO
Spray freeze drying (SFD) is an ice templating method used to produce highly porous particles with complex pore architectures governed by ice nucleation and growth. SFD particles have been advanced as drug carrier systems, but the quantitative description of the morphology formation in the SFD process is still challenging. Here, the pore space dimensions of SFD particles prepared from aqueous dextran solutions of varying molecular weights (40-200 kDa) and concentrations (5-20%) are analyzed using scanning electron microscopy. Coexisting morphologies composed of cellular and dendritic motifs are obtained, which are attributed to variations in the ice growth mechanism determined by the SFD system and modulation of these mechanisms by given precursor solution properties leading to changes in their pore dimensions. Particles with low-aspect ratio cellular pores showing variation of around 0.5-1 µm in diameter with precursor composition but roughly constant with particle diameter are ascribed to a rapid growth regime with high nucleation site density. Image analysis suggests that the pore volume decreases with dextran solid content. Dendritic pores (≈2-20 µm in diameter) with often a central cellular region are identified with surface nucleation and growth followed by a slower growth regime, leading to the overall dendrite surface area scaling approximately linearly with the particle diameter. The dendrite lamellar spacing depends on the concentration according to an inverse power law but is not significantly influenced by molecular weight. Particles with highly elongated cellular pores without lamellar formation show intermediate pore dimensions between the above two limiting morphological types. Analysis of variance and post hoc tests indicate that dextran concentration is the most significant factor in affecting the pore dimensions. The SFD dextran particles herein described could find use in pulmonary drug delivery due to their high porosity and biocompatibility of the matrix material.
Assuntos
Dextranos , Gelo , Liofilização/métodos , Peso Molecular , Tamanho da Partícula , PorosidadeRESUMO
Coamorphous systems comprising small molecules are emerging as counterparts to polymeric solid dispersions. However, the glass transition temperatures (Tgs) of coamorphous materials are relatively low because of the lack of polymeric carriers with higher Tgs. This study aimed to investigate the applicability of lactose (LAC) as an antiplasticizing coformer to a coamorphous system. Diphenhydramine hydrochloride (DPH) was selected as a model drug (Tg = 16 °C). Differential scanning calorimetry showed a comelting point in addition to a decrease in the neat melting points depending on the composition of the physical mixtures, suggesting that the mixture of DPH-LAC was eutectic. The melting point of the eutectic mixture was calculated according to the Schröder-van Laar equation. The heat of fusion of the eutectic mixture was maximized at a 70:30 molar ratio of DPH to LAC; at this point, the melting peaks of the pure components disappeared. The heat flow profiles following the melting and cooling of DPH-LAC physical mixtures at the ratios from 10:90 to 90:10 showed a single Tg, suggesting the formation of a coamorphous system. Lactose showed a Tg of over 100 °C, and the Tg of DPH increased with the molar ratio of LAC; it was 84 °C at a 10:90 molar ratio of DPH to LAC. The Raman image indicated the formation of a homogeneous dispersion of DPH and LAC in the coamorphous system. Peak shifts in the infrared spectra indicated the presence of intermolecular interactions between the amino group of DPH and the hydroxyl group of LAC. Principal component analysis of the infrared spectra revealed a significant change at the 70:30 molar ratio of DPH to LAC, which was in agreement with the results of the thermal analysis. A stability test at 40 °C revealed rapid crystallization of the supercooled liquid DPH. The coamorphous samples containing 10-50% of LAC remained in an amorphous state for 21 days, and no crystallization was observed for the samples containing >60% of LAC for 28 days. The relatively lower Tg (less than 40 °C) of the coamorphous system containing 10-50% of LAC might have caused crystallization during storage. These findings indicate that LAC, which is a safe and widely used pharmaceutical excipient, can be applied to coamorphous systems as an antiplasticizing coformer.
Assuntos
Difenidramina , Lactose , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Solubilidade , Temperatura , Temperatura de TransiçãoRESUMO
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 µm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Assuntos
Antituberculosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Glicogênio/química , Rifampina/administração & dosagem , Células A549 , Administração por Inalação , Aerossóis , Animais , Antituberculosos/química , Antituberculosos/toxicidade , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Inaladores de Pó Seco , Excipientes/química , Humanos , Camundongos , Tamanho da Partícula , Porosidade , Células RAW 264.7 , Rifampina/química , Rifampina/toxicidade , Distribuição TecidualRESUMO
Extra-fine particle fraction (eFPF, the fraction of particles with aerodynamic size <2 µm) is an essential metric to evaluate the deep lung delivery of dry powder inhalers (DPIs). The product of spray-drying has the potential to be applied in DPI formulations regarding its controllable size. This study performed an eFPF enhancement of levofloxacin DPI formulations by optimizing the spray-drying process parameters such as inlet temperature, feed flow rate, and gas flow rate, using a design space compiled from response surfaces. A polysaccharide, phytoglycogen, was used as an excipient matrix to prepare DPI formulations containing the antibiotic levofloxacin hydrate and the amino acid L-leucine. The aerodynamic-related properties and the percentage yield of spray-dried particles were evaluated as target outcomes. The influence of process variables on the product outcomes was also summarized. The most critical factor controlling inhalation properties was gas flow rate, owing to its significant contributions (p<0.05), which is coherent to most articles of engineering. A design space was plotted using response surfaces to optimize process parameters. The performance of the design space was evaluated. Most responses of the optimized runs were within the 95% prediction interval. The design space was adopted to successfully fabricate levofloxacin-containing deep lung delivery inhalable particles (eFPF >5%). The usefulness of the design space in another drug was also studied. The predicted design space may support future studies that aim to prepare composite particles with fair alveolar inhalation performance for DPI formulations using a hydrophilic macromolecular polysaccharide excipient matrix and leucine.