Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosurgery ; 91(3): 414-421, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593730

RESUMO

BACKGROUND: Growing evidence suggests that piriform cortex resection during anterior temporal lobectomy is important for achieving good seizure outcome in mesial temporal lobe epilepsy (mTLE). However, the relationship between seizure outcome and piriform cortex ablation during MR-guided laser interstitial thermal therapy (MRgLITT) remains unclear. OBJECTIVE: To determine whether ablation of piriform cortex was associated with seizure outcome in patients with mTLE undergoing MRgLITT. METHODS: We performed preablation and postablation volumetric analyses of hippocampus, amygdala, piriform cortex, and ablation volumes in patients with mTLE who underwent MRgLITT at our institution from 2014 to 2019. RESULTS: Thirty nine patients with mTLE were analyzed. In univariate logistic regression, percent piriform cortex ablation was associated with International League Against Epilepsy (ILAE) class 1 at 6 months (odds ratio [OR] 1.051, 95% CI [1.001-1.117], P = .045), whereas ablation volume, percent amygdala ablation, and percent hippocampus ablation were not ( P > .05). At 1 year, ablation volume was associated with ILAE class 1 (OR 1.608, 95% CI [1.071-2.571], P = .021) while percent piriform cortex ablation became a trend (OR 1.050, 95% CI [0.994-1.109], P = .054), and both percent hippocampus ablation and percent amygdala ablation were not significantly associated with ILAE class 1 ( P > .05). In multivariable logistic regression, only percent piriform cortex ablation was a significant predictor of seizure freedom at 6 months (OR 1.085, 95% CI [1.012-1.193], P = .019) and at 1 year (OR 1.074, 95% CI [1.003-1.178], P = .041). CONCLUSION: Piriform cortex ablation volume is associated with seizure outcome in patients with mTLE undergoing MRgLITT. The piriform cortex should be considered a high yield ablation target to achieve good seizure outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Terapia a Laser , Córtex Piriforme , Tonsila do Cerebelo/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Convulsões/complicações , Convulsões/cirurgia , Resultado do Tratamento
2.
J Neurosurg ; : 1-7, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34891139

RESUMO

OBJECTIVE: Maximal safe ablation of target structures during magnetic resonance-guided laser interstitial thermal therapy (MRgLiTT) is critical to achieving good seizure outcome in patients with mesial temporal lobe epilepsy (mTLE). The authors sought to determine whether intraoperative physiological variables are associated with ablation volume during MRgLiTT. METHODS: Patients with mTLE who underwent MRgLiTT at our institution from 2014 to 2019 were retrospectively analyzed. Ablation volume was determined with volumetric analysis of intraoperative postablation MR images. Physiological parameters (systolic blood pressure [SBP], diastolic blood pressure [DBP], mean arterial pressure [MAP], end-tidal carbon dioxide [ETCO2]) measured 40 minutes prior to ablation were analyzed. Univariate and multivariate regression analyses were performed to determine independent predictors of ablation volume. RESULTS: Forty-four patients met the inclusion criteria. The median (interquartile range) ablation volume was 4.27 (2.92-5.89) cm3, and median ablation energy was 7216 (6402-8784) J. The median MAP, SBP, DBP, and ETCO2 values measured during the 40-minute period leading up to ablation were 72.8 (66.2-81.5) mm Hg, 104.4 (96.4-114.4) mm Hg, 62.4 (54.1-69.8) mm Hg, and 34.1 (32.0-36.2) mm Hg, respectively. In univariate analysis, only total laser energy (r = 0.464, p = 0.003) and 40-minute average ETCO2 (r = -0.388, p = 0.012) were significantly associated with ablation volume. In multivariate analysis, only ETCO2 ≤ 33 mm Hg (p = 0.001) was significantly associated with ablation volume. CONCLUSIONS: Total ablation energy and ETCO2, but not blood pressure, may significantly affect ablation volume in mTLE patients undergoing MRgLiTT. Mild hypocapnia was associated with increased extent of ablation. Intraoperative monitoring and modulation of ETCO2 may help improve extent of ablation, prediction of ablation volume, and potentially seizure outcome.

3.
Front Neurosci ; 14: 558967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132822

RESUMO

Deep brain stimulation (DBS) is an effective surgical therapy for Parkinson's disease (PD). However, limitations of the DBS systems have led to great interest in adaptive neuromodulation systems that can dynamically adjust stimulation parameters to meet concurrent therapeutic demand. Constant high-frequency motor cortex stimulation has not been remarkably efficacious, which has led to greater focus on modulation of subcortical targets. Understanding of the importance of timing in both cortical and subcortical stimulation has generated an interest in developing more refined, parsimonious stimulation techniques based on critical oscillatory activities of the brain. Concurrently, much effort has been put into identifying biomarkers of both parkinsonian and physiological patterns of neuronal activities to drive next generation of adaptive brain stimulation systems. One such biomarker is beta-gamma phase amplitude coupling (PAC) that is detected in the motor cortex. PAC is strongly correlated with parkinsonian specific motor signs and symptoms and respond to therapies in a dose-dependent manner. PAC may represent the overall state of the parkinsonian motor network and have less instantaneously dynamic fluctuation during movement. These findings raise the possibility of novel neuromodulation paradigms that are potentially less invasiveness than DBS. Successful application of PAC in neuromodulation may necessitate phase-dependent stimulation technique, which aims to deliver precisely timed stimulation pulses to a specific phase to predictably modulate to selectively modulate pathological network activities and behavior in real time. Overcoming current technical challenges can lead to deeper understanding of the parkinsonian pathophysiology and development of novel neuromodulatory therapies with potentially less side-effects and higher therapeutic efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA