Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 15548, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138423

RESUMO

The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Ficobilissomas/química , Synechocystis/química , Proteínas de Bactérias/genética , Carotenoides/efeitos da radiação , Cristalografia por Raios X , Cinética , Lasers , Luz , Modelos Moleculares , Ficobilissomas/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Espectrometria de Fluorescência , Synechocystis/genética
2.
Photosynth Res ; 130(1-3): 389-401, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27161566

RESUMO

Orange carotenoid protein (OCP) is a water-soluble photoactive protein responsible for a photoprotective mechanism of nonphotochemical quenching in cyanobacteria. Under blue-green illumination, OCP converts from the stable orange into the signaling red quenching form; however, the latter form could also be obtained by chemical activation with high concentrations of sodium thiocyanate (NaSCN) or point mutations. In this work, we show that a single replacement of tryptophan-288, normally involved in protein-chromophore interactions, by alanine, results in formation of a new protein form, hereinafter referred to as purple carotenoid protein (PCP). Comparison of resonance Raman spectra of the native photoactivated red form, chemically activated OCP, and PCP reveals that carotenoid conformation is sensitive to the structure of the C-domain, implicating that the chromophore retains some interactions with this part of the protein in the active red form. Combination of differential scanning fluorimetry and picosecond time-resolved fluorescence anisotropy measurements allowed us to compare the stability of different OCP forms and to estimate relative differences in protein rotation rates. These results were corroborated by hydrodynamic analysis of proteins by dynamic light scattering and analytical size-exclusion chromatography, indicating that the light-induced conversion of the protein is accompanied by a significant increase in its size. On the whole, our data support the idea that the red form of OCP is a molten globule-like protein in which, however, interactions between the carotenoid and the C-terminal domain are preserved.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia em Gel , Clonagem Molecular , Cianobactérias/fisiologia , Fluorescência , Polarização de Fluorescência , Fluorometria , Análise Espectral Raman , Synechocystis/fisiologia
3.
Photosynth Res ; 125(1-2): 167-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25800518

RESUMO

Under high photon flux density of solar radiation, the photosynthetic apparatus can be damaged. To prevent this photodestruction, cyanobacteria developed special mechanisms of non-photochemical quenching (NPQ) of excitation energy in phycobilisomes. In Synechocystis, NPQ is triggered by the orange carotenoid protein (OCP), which is sensitive to blue-green illumination allowing it to bind to the phycobilisome reducing the flow of energy to the photosystems. Consequent decoupling of OCP and recovery of phycobilisome fluorescence in vivo is controlled by the so called fluorescence recovery protein (FRP). In this work, the role of the phycobilisome core components, apcD and apcF, in non-photochemical quenching and subsequent fluorescence recovery in the phycobilisomes of the cyanobacterium Synechocystis sp. PCC6803 has been investigated. Using a single photon counting technique, we have registered fluorescence decay spectra with picosecond time resolution during fluorescence recovery. In order to estimate the activation energy for the photocycle, spectroscopic studies in dependency on the temperature from 5 to 45 °C have been performed. It was found that fluorescence quenching and recovery were strongly temperature dependent for all strains exhibiting characteristic non-linear time courses. The rise of the fluorescence intensity during fluorescence recovery after NPQ can be completely described by the increase of the phycobilisome core fluorescence lifetime. It was shown that fluorescence recovery of apcD- and apcF-deficient mutants is characterized by a significantly lower activation energy barrier compared to wild type. This phenomenon indicates that apcD and apcF gene products may be required for proper interaction of FRP and OCP coupled to the phycobilisome core. In addition, we found that the rate of fluorescence recovery decreases with an increase of the non-photochemical quenching amplitude, probably due to depletion of substrate for the enzymatic reaction catalyzed by FRP.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Fluorescência , Luz , Ficobilissomas/efeitos da radiação , Synechocystis/efeitos da radiação , Temperatura
4.
Plant Physiol Biochem ; 81: 67-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24485218

RESUMO

Photoprotective mechanisms were studied on the tripartite lichen Peltigera aphthosa that exhibits external cephalodia. Using the methods of steady-state and time-resolved fluorescence microscopy, we studied the dynamics of the rehydration process in different parts of the lichen thalli. It was found that apical, medial and basal parts of the thallus are not only morphologically different, but also show completely different chlorophyll induction curves and other spectral characteristics. In dry state, significant contribution to the fluorescence spectrum of lichen gives a green fluorescence of hyphae forming the upper crust, which is rapidly and almost completely quenched during the rehydration process. Probably this is one of the protective mechanisms that reduce the amount of light reaching the PS II reaction centers in the dry state. In the process of rehydration, we observed an increase in the intensity of the chlorophyll fluorescence of the photobiont at 680 nm, with significant changes of the fluorescence lifetimes and the amplitude ratios of fast and slow components of fluorescence decay kinetics. While in dry state, chlorophyll fluorescence is strongly quenched (opposite to the fluorescence of the hyphae), and the fluorescence time constants recover to the typical decay times of active photosynthetic organisms during rehydration. The quantitative behavior of these changes differs largely between the apical, medial and basal parts of the thallus, probably due to the complex interactions of the fungus, algae and cyanobacteria.


Assuntos
Líquens/citologia , Microscopia de Fluorescência/métodos , Clorofila/metabolismo , Dessecação , Fluorescência , Cinética , Líquens/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA