Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Invest Dermatol ; 143(5): 751-761.e7, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455652

RESUMO

Human cathelicidin LL-37 is a multifunctional antimicrobial peptide that exhibits antimicrobial and immunomodulatory activities. LL-37 regulates skin barrier function and was recently reported to activate autophagy in macrophages. Because autophagy deficiency is associated with skin diseases characterized by a dysfunctional epidermal barrier, we hypothesized that LL-37 might regulate the skin barrier through autophagy modulation. We showed that LL-37 activated autophagy in human keratinocytes and three-dimensional skin equivalent models as indicated by increases in LC3 puncta formation, decreases in p62, and autophagosome and autolysosome formation. LL-37‒induced autophagy was suppressed by P2X7 receptor, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 inhibitors, suggesting that the P2X7, adenosine monophosphate‒activated protein kinase, and unc-51-like kinase 1 pathways are involved. Moreover, LL-37 enhanced the phosphorylation of adenosine monophosphate‒activated protein kinase and unc-51-like kinase 1. In addition, LL-37‒mediated autophagy involves the mechanistic target of rapamycin and MAPK pathways. Interestingly, the LL-37‒induced distribution of tight junction proteins and improvement in the tight junction barrier were inhibited in autophagy-deficient keratinocytes and keratinocytes and skin models treated with autophagy inhibitors, indicating that the LL-37‒mediated tight junction barrier is associated with autophagy activation. Collectively, these findings suggest that LL-37 is a potential therapeutic target for skin diseases characterized by dysfunctional autophagy and skin barriers.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Humanos , Monofosfato de Adenosina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Catelicidinas/farmacologia , Catelicidinas/metabolismo , Queratinócitos/metabolismo , Sirolimo , Transdução de Sinais
2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232814

RESUMO

Betacellulin (BTC) is a peptide ligand that belongs to the epidermal growth factor family, the members of which have been implicated in skin morphogenesis, homeostasis, repair, and angiogenesis; however, the role of BTC in the regulation of the skin barrier remains unknown. To examine the role of BTC in skin barrier function, we analyzed atopic dermatitis (AD) transcriptomic data from Gene Expression Omnibus (GEO) datasets, performed BTC immunohistochemistry using human skin tissues, and evaluated the effects of BTC on primary human keratinocytes by real-time PCR, Western blotting, and assay of the transepidermal electrical resistance (TER), a functional parameter to monitor the tight junction barrier. We found that the gene expression of BTC was downregulated in skin lesions from patients with AD, and this downregulated expression recovered following biological treatments. Consistently, the BTC protein levels were downregulated in the lesional skin of AD patients compared with the normal skin of healthy participants, suggesting that the BTC levels in skin might be a biomarker for the diagnosis and therapy of AD. Furthermore, in human keratinocytes, BTC knockdown reduced the levels of skin-derived antimicrobial peptides and skin barrier-related genes, whereas BTC addition enhanced their levels. Importantly, in human skin equivalents, BTC restored the increased tight junction permeability induced by Th2 cytokine IL-4/IL-13 treatment. In addition, specific inhibitors of epidermal growth factor receptor (EGFR) and protein kinase C (PKC) abolished the BTC-mediated improvement in skin barrier-related proteins in keratinocyte monolayers. Collectively, our findings suggest that treatment with BTC might improve the Th2-type cytokine-mediated impairment of skin barrier function through the EGFR/PKC axis and that BTC might be a novel potential biomarker and therapeutic target for the treatment of skin conditions characterized by the overproduction of Th2 cytokines and dysfunctional skin barriers, such as AD.


Assuntos
Citocinas , Dermatite Atópica , Betacelulina/metabolismo , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-4/metabolismo , Queratinócitos/metabolismo , Ligantes , Proteína Quinase C/metabolismo , Pele/metabolismo
3.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834333

RESUMO

Human ß-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4- and IL-13-mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3-mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3-mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.


Assuntos
Dermatite Atópica , beta-Defensinas , Animais , Autofagia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Queratinócitos/patologia , Camundongos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , beta-Defensinas/genética , beta-Defensinas/metabolismo , beta-Defensinas/uso terapêutico
4.
Biology (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205150

RESUMO

BACKGROUND: Although emerging studies support the relationship between S100 calcium binding protein A7 (S100A7) and various cancers, no pancancer analysis of S100A7 is available thus far. METHODS: We investigated the potential oncogenic roles of S100A7 across 33 tumors based on datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Moreover, a survival prognosis analysis was performed with the gene expression profiling interactive analysis (GEPIA) web server and Kaplan-Meier plotter, followed by the genetic alteration analysis of S100A7 and enrichment analysis of S100A7-related genes. RESULTS: S100A7 was highly expressed in most types of cancers, and remarkable associations were found between S100A7 expression and the prognosis of cancer patients. S100A7 expression was associated with the expression of DNA methyltransferase and mismatch repair genes in head and neck squamous cell carcinoma, the infiltration of CD8+ T cells and cancer-associated fibroblasts in different tumors. Moreover, glycosaminoglycan degradation and lysosome-associated functions were involved in the functional mechanisms of S100A7. CONCLUSIONS: The current pancancer study shows a relatively integrative understanding of the carcinogenic involvement of S100A7 in numerous types of cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA