Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(26): 266201, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215361

RESUMO

We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100 nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities. We propose an atomistic mechanism for this phenomenon, associated with synchronic out-of-plane surface fluctuations of thermal origin, and confirm it by numerical experiments. Based on this mechanism, we develop a theory for this type of superlubricity and show that friction force increases linearly with increasing temperature and relative velocity for velocities larger than a threshold velocity. The molecular dynamic results are in a fair agreement with predictions of the theory.

2.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591378

RESUMO

The interaction of water with confining surfaces is primarily governed by the wetting properties of the wall material-in particular, whether it is hydrophobic or hydrophilic. The hydrophobicity or hydrophilicity itself is determined primarily by the atomic structure and polarity of the surface groups. In the present work, we used molecular dynamics to study the structure and properties of nanoscale water layers confined between layered metal hydroxide surfaces with a brucite-like structure. The influence of the surface polarity of the confining material on the properties of nanoconfined water was studied in the pressure range of 0.1-10 GPa. This pressure range is relevant for many geodynamic phenomena, hydrocarbon recovery, contact spots of tribological systems, and heterogeneous materials under extreme mechanical loading. Two phase transitions were identified in water confined within 2 nm wide slit-shaped nanopores: (1) at p1 = 3.3-3.4 GPa, the liquid transforms to a solid phase with a hexagonal close-packed (HCP) crystal structure, and (2) at p2 = 6.7-7.1 GPa, a further transformation to face-centered cubic (FCC) crystals occurs. It was found that the behavior of the confined water radically changes when the partial charges (and, therefore, the surface polarity) are reduced. In this case, water transforms directly from the liquid phase to an FCC-like phase at 3.2-3.3 GPa. Numerical simulations enabled determination of the amount of hydrogen bonding and diffusivity of nanoconfined water, as well as the relationship between pressure and volumetric strain.

3.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214977

RESUMO

The increasing growth in the development of various novel nanomaterials and their biomedical applications has drawn increasing attention to their biological safety and potential health impact. The most commonly used methods for nanomaterial toxicity assessment are based on laboratory experiments. In recent years, with the aid of computer modeling and data science, several in silico methods for the cytotoxicity prediction of nanomaterials have been developed. An affordable, cost-effective numerical modeling approach thus can reduce the need for in vitro and in vivo testing and predict the properties of designed or developed nanomaterials. We propose here a new in silico method for rapid cytotoxicity assessment of two-dimensional nanomaterials of arbitrary chemical composition by using free energy analysis and molecular dynamics simulations, which can be expressed by a computational indicator of nanotoxicity (CIN2D). We applied this approach to five well-known two-dimensional nanomaterials promising for biomedical applications: graphene, graphene oxide, layered double hydroxide, aloohene, and hexagonal boron nitride nanosheets. The results corroborate the available laboratory biosafety data for these nanomaterials, supporting the applicability of the developed method for predictive nanotoxicity assessment of two-dimensional nanomaterials.

4.
Phys Rev E ; 105(1-1): 014607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193217

RESUMO

The impact of nanoparticles (NPs) composed of atoms with covalent bonding is investigated numerically and theoretically. We use recent models of covalent bonding of carbon atoms and elaborate a numerical model of amorphous carbon (a-C) NPs, which may be applied for modeling soot particles. We compute the elastic moduli of the a-C material which agree well with the available data. We reveal an interesting phenomenon-stress-dependent adhesion, which refers to stress-enhanced formation of covalent bonds between contacting surfaces. We observe that the effective adhesion coefficient linearly depends on the maximal stress between the surfaces and explain this dependence. We compute the normal restitution coefficient for colliding NPs and explore the dependence of the critical velocity, demarcating bouncing and aggregative collisions, on the NP radius. Using the obtained elastic and stress-dependent adhesive coefficients we develop a theory for the critical velocity. The predictions of the theory agree very well with the simulation results.

5.
PLoS One ; 16(7): e0253835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197504

RESUMO

We performed large-scale numerical simulations using a composite model to investigate the infection spread in a supermarket during a pandemic. The model is composed of the social force, purchasing strategy and infection transmission models. Specifically, we quantified the infection risk for customers while in a supermarket that depended on the number of customers, the purchase strategies and the physical layout of the supermarket. The ratio of new infections compared to sales efficiency (earned profit for customer purchases) was computed as a factor of customer density and social distance. Our results indicate that the social distance between customers is the primary factor influencing infection rate. Supermarket layout and purchasing strategy do not impact social distance and hence the spread of infection. Moreover, we found only a weak dependence of sales efficiency and customer density. We believe that our study will help to establish scientifically-based safety rules that will reduce the social price of supermarket business.


Assuntos
Transmissão de Doença Infecciosa/estatística & dados numéricos , Modelos Biológicos , Pandemias/estatística & dados numéricos , Supermercados , Simulação por Computador , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Pandemias/prevenção & controle , Medição de Risco/estatística & dados numéricos
6.
Materials (Basel) ; 13(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233783

RESUMO

Recent studies have shown that the use of membranes based on artificial nanoporous materials can be effective for desalination and decontamination of water, separation of ions and gases as well as for solutions to other related problems. Before the expensive stages of synthesis and experimental testing, the search of the optimal dimensions and geometry of nanopores for the water desalination membranes can be done using computer-aided design. In the present study, we propose and examine the assumption that rectangular nanopores with a high aspect ratio would demonstrate excellent properties in terms of water permeation rate and ion rejection. Using the non-equilibrium molecular dynamic simulations, the properties of promising hexagonal boron nitride (h-BN) membranes with rectangular nanopores were predicted. It has been found that not only the nanopore width but also its design ("armchair" or "zigzag") determines the permeability and ion selectivity of the h-BN-based membrane. The results show that membranes with a zigzag-like design of nanopores of ~6.5 Å width and the armchair-like nanopores of ~7.5 Å width possess better efficiency compared with other considered geometries. Moreover, the estimated efficiency of these membranes is higher than that of any commercial membranes and many other previously studied single-layer model membranes with other designs of the nanopores.

7.
Nano Lett ; 18(9): 5401-5410, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070485

RESUMO

Owing to their unique physicochemical properties, nanomaterials have become a focus of multidisciplinary research efforts including investigations of their interactions with tumor cells and stromal compartment of tumor microenvironment (TME) toward the development of next-generation anticancer therapies. Here, we report that agglomerates of radially assembled Al hydroxide crumpled nanosheets exhibit anticancer activity due to their selective adsorption properties and positive charge. This effect was demonstrated in vitro by decreased proliferation and viability of tumor cells, and further confirmed in two murine cancer models. Moreover, Al hydroxide nanosheets almost completely inhibited the growth of murine melanoma in vivo in combination with a minimally effective dose of doxorubicin. Our direct molecular dynamics simulation demonstrated that Al hydroxide nanosheets can cause significant ion imbalance in the living cell perimembranous space through the selective adsorption of extracellular anionic species. This approach to TME dysregulation could lay the foundation for development of novel anticancer therapy strategies.


Assuntos
Hidróxido de Alumínio/farmacologia , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Hidróxido de Alumínio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Células MCF-7 , Camundongos , Simulação de Dinâmica Molecular , Nanoconchas/química , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA