Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 23(23): 9025-9029, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34748356

RESUMO

The synthesis of 2-oxygenated dihydrobenzofurans involving the [3 + 2] coupling of quinone monoacetals with vinyl ethers has been realized by tetrabutylammonium triflate catalysis. The reaction involves a new activation method of the acetal moiety in quinone monoacetals under acid-free conditions affording the highly oxygenated dihydrobenzofurans. This new activation mode was achieved by using the triflate anion catalyst for stabilization of the highly reactive cationic intermediate.

2.
Phys Rev Lett ; 121(6): 062501, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141652

RESUMO

A novel shape evolution in the Sn isotopes by the state-of-the-art application of the Monte Carlo shell model calculations is presented in a unified way for the ^{100-138}Sn isotopes. A large model space consisting of eight single-particle orbits for protons and neutrons is taken with the fixed Hamiltonian and effective charges, where protons in the 1g_{9/2} orbital are fully activated. While the significant increase of the B(E2;0_{1}^{+}→2_{1}^{+}) value, seen around ^{110}Sn as a function of neutron number (N), has remained a major puzzle over decades, it is explained as a consequence of the shape evolution driven by proton excitations from the 1g_{9/2} orbital. A second-order quantum phase transition is found around N=66, connecting the phase of such deformed shapes to the spherical pairing phase. The shape and shell evolutions are thus described, covering topics from the Gamow-Teller decay of ^{100}Sn to the enhanced double magicity of ^{132}Sn.

3.
Beilstein J Org Chem ; 14: 1087-1094, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977380

RESUMO

An oxidation system comprising phenyliodine(III) diacetate (PIDA) and iodosobenzene with inorganic bromide, i.e., sodium bromide, in an organic solvent led to the direct introduction of carboxylic acids into benzylic C-H bonds under mild conditions. The unique radical species, generated by the homolytic cleavage of the labile I(III)-Br bond of the in situ-formed bromo-λ3-iodane, initiated benzylic carboxylation with a high degree of selectivity for the secondary benzylic position.

4.
Phys Rev Lett ; 117(17): 172502, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824474

RESUMO

The rapid shape change in Zr isotopes near neutron number N=60 is identified to be caused by type II shell evolution associated with massive proton excitations to its 0g_{9/2} orbit, and is shown to be a quantum phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N=50-70 with many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2) values are obtained within a single framework in good agreement with experiment, depicting various shapes in going from N=50 to 70. The novel coexistence of prolate and triaxial shapes is suggested.

5.
Phys Rev Lett ; 114(3): 032501, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25658995

RESUMO

We clarify the origin of the anomalously hindered E2 decay from the 4_{1}^{+} level in ^{44}S by performing a novel many-body analysis in the shell model. Within a unified picture about the occurrence of isomerism in neutron-rich sulfur isotopes, the 4_{1}^{+} state is demonstrated to be a K=4 isomer dominated by the two-quasiparticle configuration νΩ^{π}=1/2^{-}⊗νΩ^{π}=7/2^{-}. The 4_{1}^{+} state in ^{44}S is a new type of high-K isomer which has significant triaxiality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA