Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349040

RESUMO

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Proteínas de Xenopus , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/genética , DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Ativação Enzimática/genética , Fosforilação/genética
2.
J Biol Chem ; 300(1): 105588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141767

RESUMO

Proliferating cell nuclear antigen (PCNA) is a homo-trimeric clamp complex that serves as the molecular hub for various DNA transactions, including DNA synthesis and post-replicative mismatch repair. Its timely loading and unloading are critical for genome stability. PCNA loading is catalyzed by Replication factor C (RFC) and the Ctf18 RFC-like complex (Ctf18-RLC), and its unloading is catalyzed by Atad5/Elg1-RLC. However, RFC, Ctf18-RLC, and even some subcomplexes of their shared subunits are capable of unloading PCNA in vitro, leaving an ambiguity in the division of labor in eukaryotic clamp dynamics. By using a system that specifically detects PCNA unloading, we show here that Atad5-RLC, which accounts for only approximately 3% of RFC/RLCs, nevertheless provides the major PCNA unloading activity in Xenopus egg extracts. RFC and Ctf18-RLC each account for approximately 40% of RFC/RLCs, while immunodepletion of neither Rfc1 nor Ctf18 detectably affects the rate of PCNA unloading in our system. PCNA unloading is dependent on the ATP-binding motif of Atad5, independent of nicks on DNA and chromatin assembly, and inhibited effectively by PCNA-interacting peptides. These results support a model in which Atad5-RLC preferentially unloads DNA-bound PCNA molecules that are free from their interactors.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Animais , DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Xenopus laevis/metabolismo , Oócitos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
Nucleic Acids Res ; 51(22): 12288-12302, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37944988

RESUMO

Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo-/-, CTF18-/-, PARP1-/-, CTF18-/-/POLE1exo-/-, PARP1-/-/POLE1exo-/-, and CTF18-/-/PARP1-/- cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo-/- and HDR-deficient BRCA1-/- cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo-/- with BRCA1-/- mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.


Assuntos
Proteínas Aviárias , DNA Polimerase II , Replicação do DNA , DNA Polimerase II/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Animais , Galinhas , Proteínas Aviárias/metabolismo
4.
Elife ; 122023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734974

RESUMO

UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ligação Proteica , Cromatina , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA
5.
Mol Cancer Res ; 18(9): 1354-1366, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467171

RESUMO

DNA replication stress (DRS) is a predominant cause of genome instability, a driver of tumorigenesis and malignant progression. Nucleoside analogue-type chemotherapeutic drugs introduce DNA damage and exacerbate DRS in tumor cells. However, the mechanisms underlying the antitumor effect of these drugs are not fully understood. Here, we show that the fluorinated thymidine analogue trifluridine (FTD), an active component of the chemotherapeutic drug trifluridine/tipiracil, delayed DNA synthesis by human replicative DNA polymerases by acting both as an inefficient deoxyribonucleotide triphosphate source (FTD triphosphate) and as an obstacle base (trifluorothymine) in the template DNA strand, which caused DRS. In cells, FTD decreased the thymidine triphosphate level in the dNTP pool and increased the FTD triphosphate level, resulting in the activation of DRS-induced cellular responses during S-phase. In addition, replication protein A-coated single-stranded DNA associated with FancD2 and accumulated after tumor cells completed S-phase. Finally, FTD activated the p53-p21 pathway and suppressed tumor cell growth by inducing cellular senescence via mitosis skipping. In contrast, tumor cells that lost wild-type p53 underwent apoptotic cell death via aberrant late mitosis with severely impaired separation of sister chromatids. These results demonstrate that DRS induced by a nucleoside analogue-type chemotherapeutic drug suppresses tumor growth irrespective of p53 status by directing tumor cell fate toward cellular senescence or apoptotic cell death according to p53 status. IMPLICATIONS: Chemotherapeutic drugs that increase DRS during S-phase but allow tumor cells to complete S-phase may have significant antitumor activity even when functional p53 is lost.


Assuntos
Antivirais/uso terapêutico , Replicação do DNA/efeitos dos fármacos , Trifluridina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Animais , Antivirais/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Trifluridina/farmacologia
7.
Genes Cells ; 24(9): 608-618, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31233675

RESUMO

Replication initiation at specific genomic loci dictates precise duplication and inheritance of genetic information. In eukaryotic cells, ATP-bound origin recognition complexes (ORCs) stably bind to double-stranded (ds) DNA origins to recruit the replicative helicase onto the origin DNA. To achieve these processes, an essential region of the origin DNA must be recognized by the eukaryotic origin sensor (EOS) basic patch within the disordered domain of the largest ORC subunit, Orc1. Although ORC also binds single-stranded (ss) DNA in an EOS-independent manner, it is unknown whether EOS regulates ORC on ssDNA. We found that, in budding yeast, ORC multimerizes on ssDNA in vitro independently of adenine nucleotides. We also found that the ORC multimers form in an EOS-dependent manner and stimulate the ORC ATPase activity. An analysis of genomics data supported the idea that ORC-ssDNA binding occurs in vivo at specific genomic loci outside of replication origins. These results suggest that EOS function is differentiated by ORC-bound ssDNA, which promotes ORC self-assembly and ATP hydrolysis. These mechanisms could modulate ORC activity at specific genomic loci and could be conserved among eukaryotes.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Ligação Proteica , Multimerização Proteica , Origem de Replicação , Saccharomyces cerevisiae
8.
Exp Cell Res ; 377(1-2): 24-35, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30802454

RESUMO

Repeat destabilisation is variously associated with human disease. In neoplastic diseases, microsatellite instability (MSI) has been regarded as simply reflecting DNA mismatch repair (MMR) deficiency. However, several discrepancies have been pointed out. Firstly, the MSI+ phenotype is not uniform in human neoplasms. Established classification utilises the frequency of microsatellite changes, i.e. MSI-H (high) and -L (low), the former regarded as an authentic MMR-defective phenotype. In addition, we have observed the qualitatively distinct modes of MSI, i.e. Type A and Type B. One discrepancy we previously pointed out is that tumours occurring in MMR gene knockout mice exhibited not drastic microsatellite changes typical in MSI-H tumours (i.e. Type B mode) but minor and more subtle alterations (i.e. Type A mode). In the present study, MSH2 mutations reported in Lynch syndrome (LS) kindred have been introduced into HeLa cells using the CRISPR/Cas9 system. The established mutant clones clearly exhibited MMR-defective phenotypes with alkylating agent-tolerance and elevated mutation frequencies. Nevertheless, microsatellites were not markedly destabilised as in MSI-H tumours occurring in LS patients, and all the observed alterations were uniformly Type A, which confirms the results in mice. Our findings suggest added complexities to the molecular mechanisms underlying repeat destabilisation in human genome.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Edição de Genes , Genômica/métodos , Instabilidade de Microssatélites , Proteína 2 Homóloga a MutS/genética , Mutação , Neoplasias Colorretais Hereditárias sem Polipose/genética , Células HeLa , Humanos , Fenótipo
9.
Nucleic Acids Res ; 46(1): 25-41, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186524

RESUMO

Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed.


Assuntos
Replicação do DNA/genética , DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , DNA Polimerase III/metabolismo , Humanos , Cinética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica
10.
Oncotarget ; 8(20): 33457-33474, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28380422

RESUMO

Chemotherapeutic nucleoside analogs, such as Ara-C, 5-Fluorouracil (5-FU) and Trifluridine (FTD), are frequently incorporated into DNA by the replicative DNA polymerases. However, it remains unclear how this incorporation kills cycling cells. There are two possibilities: Nucleoside analog triphosphates inhibit the replicative DNA polymerases, and/or nucleotide analogs mis-incorporated into genomic DNA interfere with the next round of DNA synthesis as replicative DNA polymerases recognize them as template DNA lesions, arresting synthesis. To address the first possibility, we selectively disrupted the proofreading exonuclease activity of DNA polymerase ε (Polε), the leading-strand replicative polymerase in avian DT40 and human TK6 cell lines. To address the second, we disrupted RAD18, a gene involved in translesion DNA synthesis, a mechanism that relieves stalled replication. Strikingly, POLE1exo-/- cells, but not RAD18-/- cells, were hypersensitive to Ara-C, while RAD18-/- cells were hypersensitive to FTD. gH2AX focus formation following a pulse of Ara-C was immediate and did not progress into the next round of replication, while gH2AX focus formation following a pulse of 5-FU and FTD was delayed to the next round of replication. Biochemical studies indicate that human proofreading-deficient Polε-exo- holoenzyme incorporates Ara-CTP, but subsequently extend from this base several times less efficiently than from intact nucleotides. Together our results suggest that Ara-C acts by blocking extension of the nascent DNA strand and is counteracted by the proofreading activity of Polε, while 5-FU and FTD are efficiently incorporated but act as replication fork blocks in the subsequent S phase, which is counteracted by translesion synthesis.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Citarabina/farmacologia , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA , Tolerância a Medicamentos/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Genótipo , Humanos , Mutação , Ubiquitina-Proteína Ligases/genética
11.
Nucleic Acids Res ; 45(8): 4550-4563, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28199690

RESUMO

The alternative proliferating-cell nuclear antigen (PCNA)-loader CTF18-RFC forms a stable complex with DNA polymerase ε (Polε). We observed that, under near-physiological conditions, CTF18-RFC alone loaded PCNA inefficiently, but loaded it efficiently when complexed with Polε. During efficient PCNA loading, CTF18-RFC and Polε assembled at a 3΄ primer-template junction cooperatively, and directed PCNA to the loading site. Site-specific photo-crosslinking of directly interacting proteins at the primer-template junction showed similar cooperative binding, in which the catalytic N-terminal portion of Polε acted as the major docking protein. In the PCNA-loading intermediate with ATPγS, binding of CTF18 to the DNA structures increased, suggesting transient access of CTF18-RFC to the primer terminus. Polε placed in DNA synthesis mode using a substrate DNA with a deoxidised 3΄ primer end did not stimulate PCNA loading, suggesting that DNA synthesis and PCNA loading are mutually exclusive at the 3΄ primer-template junction. Furthermore, PCNA and CTF18-RFC-Polε complex engaged in stable trimeric assembly on the template DNA and synthesised DNA efficiently. Thus, CTF18-RFC appears to be involved in leading-strand DNA synthesis through its interaction with Polε, and can load PCNA onto DNA when Polε is not in DNA synthesis mode to restore DNA synthesis.


Assuntos
Proteínas de Transporte/genética , DNA Polimerase II/genética , DNA/genética , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteína de Replicação C/genética , ATPases Associadas a Diversas Atividades Celulares , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , DNA/metabolismo , DNA Polimerase II/metabolismo , Primers do DNA/genética , Primers do DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Proteínas Nucleares/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação C/metabolismo
12.
Adv Exp Med Biol ; 1042: 135-162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357057

RESUMO

Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Eucariotos/genética , Células Eucarióticas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexo de Reconhecimento de Origem/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteína de Replicação C/metabolismo
13.
Nat Commun ; 7: 12135, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27401717

RESUMO

Claspin transmits replication stress signal from ATR to Chk1 effector kinase as a mediator. It also plays a role in efficient replication fork progression during normal growth. Here we have generated conditional knockout of Claspin and show that Claspin knockout mice are dead by E12.5 and Claspin knockout mouse embryonic fibroblast (MEF) cells show defect in S phase. Using the mutant cell lines, we report the crucial roles of the acidic patch (AP) near the C terminus of Claspin in initiation of DNA replication. Cdc7 kinase binds to AP and this binding is required for phosphorylation of Mcm. AP is involved also in intramolecular interaction with a N-terminal segment, masking the DNA-binding domain and a newly identified PIP motif, and Cdc7-mediated phosphorylation reduces the intramolecular interaction. Our results suggest a new role of Claspin in initiation of DNA replication during normal S phase through the recruitment of Cdc7 that facilitates phosphorylation of Mcm proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Elife ; 52016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27402201

RESUMO

Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutSα inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutSα in the retention of the post-replicative MMR capability.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Extratos Celulares , Células Cultivadas , DNA/metabolismo , Ligação Proteica , Xenopus , Zigoto/enzimologia
15.
Nucleic Acids Res ; 44(15): 7242-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27185888

RESUMO

The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA/biossíntese , DNA/química , Alelos , Linhagem Celular , Dano ao DNA , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/isolamento & purificação , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Humanos , Imunoglobulinas/genética , Raios Ultravioleta
16.
Front Microbiol ; 7: 521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148210

RESUMO

Purification of the origin recognition complex (ORC) from wild-type budding yeast cells more than two decades ago opened up doors to analyze the initiation of eukaryotic chromosomal DNA replication biochemically. Although revised methods to purify ORC from overproducing cells were reported later, purification of mutant proteins using these systems still depends on time-consuming processes including genetic manipulation to construct and amplify mutant baculoviruses or yeast strains as well as several canonical protein fractionations. Here, we present a streamlined method to construct mutant overproducers, followed by purification of mutant ORCs. Use of mammalian cells co-transfected with conveniently mutagenized plasmids bearing a His tag excludes many of the construction and fractionation steps. Transfection is highly efficient. All the six subunits of ORC are overexpressed at a considerable level and isolated as a functional heterohexameric complex. Furthermore, use of mammalian cells prevents contamination of wild-type ORC from yeast cells. The method is applicable to wild-type and at least three mutant ORCs, and the resultant purified complexes show expected biochemical activities. The rapid acquisition of mutant ORCs using this system will boost systematic biochemical dissection of ORC and can be even applied to the purification of protein complexes other than ORC.

17.
Genes Cells ; 21(5): 482-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26987677

RESUMO

Human Ctf18-RFC, a PCNA loader complex, interacts with DNA polymerase ε (Polε) through a structure formed by the Ctf18, Dcc1 and Ctf8 subunits. The C-terminal stretch of Ctf18, which is highly conserved from yeast to human, is necessary to form the Polε-capturing structure. We found that in the budding yeast Saccharomyces cerevisiae, Ctf18, Dcc1 and Ctf8 formed the same structure through the conserved C-terminus and interacted specifically with Polε. Thus, the specific interaction of Ctf18-RFC with Polε is a conserved feature between these proteins. A C-terminal deletion mutant of Ctf18 (ctf18(ΔC) ) exhibited the same high sensitivity to hydroxyurea as the complete deletion strain (ctf18Δ) or ATPase-deficient mutant (ctf18(K189A) ), but was somewhat less sensitive to methyl methanesulfonate than either of them. These phenotypes were also observed in dcc1Δ and ctf8Δ, predicted to be deficient in the interaction with Polε. Furthermore, both plasmid loss and gross chromosomal rearrangement (GCR) rates were increased in ctf18(ΔC) cells to the same extent as in ctf18Δ cells. These results indicate that the Ctf18-RFC/Polε interaction plays a crucial role in maintaining genome stability in budding yeast, probably through recruitment of this PCNA loader to the replication fork.


Assuntos
DNA Polimerase II/metabolismo , Instabilidade Genômica , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animais , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
18.
Sci Rep ; 5: 14929, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456755

RESUMO

In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.


Assuntos
Replicação do DNA , DNA/química , Complexo de Reconhecimento de Origem/química , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Sequência Conservada , DNA/genética , DNA/metabolismo , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Genes Cells ; 20(10): 817-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26271349

RESUMO

Trinucleotide repeats (TNRs) are highly unstable in genomes, and their expansions are linked to human disorders. DNA replication is reported to be involved in TNR instability, but the current models are insufficient in explaining TNR expansion is induced during replication. Here, we investigated replication fork progression across huntingtin (HTT)-gene-derived fragments using an Escherichia coli oriC plasmid DNA replication system. We found most of the forks to travel smoothly across the HTT fragments even when the fragments had a pathological length of CAG/CTG repeats (approximately 120 repeats). A little fork stalling in the fragments was observed, but it occurred within a short 3'-flanking region downstream of the repeats. This region contains another short TNR, (CCG/CGG)7 , and the sense strand containing CCG repeats appeared to impede the replicative DNA polymerase Pol III. Examining the behavior of the human leading and lagging replicative polymerases Pol epsilon (hPolε) and Pol delta (hPolδ) on this sequence, we found hPolδ replicating DNA across the CCG repeats but hPolε stalling at the CCG repeats even if the secondary structure is eliminated by a single-stranded binding protein. These findings offer insights into the distinct behavior of leading and lagging polymerases at CCG/CGG repeats, which may be important for understanding the process of replication arrest and genome instability at the HTT gene.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas do Tecido Nervoso/genética , Repetições de Trinucleotídeos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteína Huntingtina
20.
J Biol Chem ; 290(32): 19923-32, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088138

RESUMO

The human checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded onto chromatin by its loader complex, Rad17-RFC, following DNA damage. The 120-amino acid (aa) stretch of the Rad9 C terminus (C-tail) is unstructured and projects from the core ring structure (CRS). Recent studies showed that 9-1-1 and CRS bind DNA independently of Rad17-RFC. The DNA-binding affinity of mutant 9(ΔC)-1-1, which lacked the Rad9 C-tail, was much higher than that of wild-type 9-1-1, suggesting that 9-1-1 has intrinsic DNA binding activity that manifests in the absence of the C-tail. C-tail added in trans interacted with CRS and prevented it from binding to DNA. We narrowed down the amino acid sequence in the C-tail necessary for CRS binding to a 15-aa stretch harboring two conserved consecutive phenylalanine residues. We prepared 9-1-1 mutants containing the variant C-tail deficient for CRS binding, and we demonstrated that the mutant form restored DNA binding as efficiently as 9(ΔC)-1-1. Furthermore, we mapped the sequence necessary for TopBP1 binding within the same 15-aa stretch, demonstrating that TopBP1 and CRS share the same binding region in the C-tail. Indeed, we observed their competitive binding to the C-tail with purified proteins. The importance of interaction between 9-1-1 and TopBP1 for DNA damage signaling suggests that the competitive interactions of TopBP1 and CRS with the C-tail will be crucial for the activation mechanism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Reparo do DNA , DNA/metabolismo , Exonucleases/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/química , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/genética , Expressão Gênica , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA