Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomed Rep ; 20(4): 70, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495345

RESUMO

In 2012, the threshold radiation dose (0.5 Gy) for cardiovascular and cerebrovascular diseases was revised, and this threshold dose may be exceeded during procedures involving radiation such as interventional radiology. Therefore, in addition to regulating radiation dose, it is necessary to develop strategies to prevent and mitigate the development of cardiovascular disease. Cellular senescence is irreversible arrest of cell proliferation. Although cellular senescence is one of the mechanisms for suppressing cancer, it also has adverse effects. For example, senescence of vascular endothelial cells is involved in development of vascular disorders. However, the mechanisms underlying induction of cellular senescence are not fully understood. Therefore, the present study explored the factors involved in the radiation-induced senescence in human umbilical vein endothelial cells (HUVECs). The present study reanalyzed the gene expression data of senescent normal human endothelial cells and fibroblast after irradiation (NCBI Gene Expression Omnibus accession no. GSE130727) and microarray data of HUVECs 24 h after irradiation (NCBI Gene Expression Omnibus accession no. GSE76484). Numerous genes related to viral infection and inflammation were upregulated in radiation-induced senescent cells. In addition, the gene group involved in the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, which plays an important role to induce anti-viral response, was altered in irradiated HUVECs. Therefore, to investigate the involvement of RIG-I and melanoma differentiation-associated gene 5 (MDA5), which are RLRs, in radiation-induced senescence of HUVECs, the protein expression of RIG-I and MDA5 and the activity of senescence-associated ß-galactosidase (SA-ß-gal), a representative senescence marker, were analyzed. Of note, knockdown of RIG-I in HUVECs significantly decreased radiation-increased proportion of cells with high SA-ß-gal activity (i.e., senescent cells), whereas this phenomenon was not observed in MDA5-knockdown cells. Taken together, the present results suggested that RIG-I, but not MDA5, was associated with radiation-induced senescence in HUVECs.

2.
Curr Issues Mol Biol ; 45(8): 6262-6271, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623213

RESUMO

Radiation therapy is commonly used to treat head and neck squamous cell carcinoma (HNSCC); however, recurrence results from the development of radioresistant cancer cells. Therefore, it is necessary to identify the underlying mechanisms of radioresistance in HNSCC. Previously, we showed that the inhibition of karyopherin-ß1 (KPNB1), a factor in the nuclear transport system, enhances radiation-induced cytotoxicity, specifically in HNSCC cells, and decreases the localization of SCC-specific transcription factor ΔNp63. This suggests that ΔNp63 may be a KPNB1-carrying nucleoprotein that regulates radioresistance in HNSCC. Here, we determined whether ΔNp63 is involved in the radioresistance of HNSCC cells. Cell survival was measured by a colony formation assay. Apoptosis was assessed by annexin V staining and cleaved caspase-3 expression. The results indicate that ΔNp63 knockdown decreased the survival of irradiated HNSCC cells, increased radiation-induced annexin V+ cells, and cleaved caspase-3 expression. These results show that ΔNp63 is involved in the radioresistance of HNSCC cells. We further investigated which specific karyopherin-α (KPNA) molecules, partners of KPNB1 for nuclear transport, are involved in nuclear ΔNp63 expression. The analysis of nuclear ΔNp63 protein expression suggests that KPNA1 is involved in nuclear ΔNp63 expression. Taken together, our results suggest that ΔNp63 is a KPNB1-carrying nucleoprotein that regulates radioresistance in HNSCC.

3.
J Radiat Res ; 64(3): 520-529, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023702

RESUMO

Mitochondria play important roles in the cellular response to various types of stress, including that triggered by ionizing radiation. We have previously reported that the mitochondrial ribosomal protein death-associated protein 3 (DAP3) regulates the radioresistance of human lung adenocarcinoma (LUAD) cell lines A549 and H1299. However, the underlying mechanism of this regulation remains to be elucidated. To this end, we have herein investigated the role of DAP3 in the cell cycle regulation after irradiation. Notably, the DAP3 knockdown attenuated the radiation-induced increase of the G2/M cell population. Furthermore, western blotting analysis has revealed that the DAP3 knockdown decreased the expression of proteins related to the G2/M arrest, such as those of the phosphorylated cdc2 (Tyr15) and the phosphorylated checkpoint kinase 1 (Ser296), in irradiated A549 cells and H1299 cells. Moreover, by using a chk1 inhibitor, we were able to demonstrate that chk1 is involved in the radiation-induced G2/M arrest in both A549 and H1299 cells. Notably, the chk1 inhibitor was able to enhance the radiosensitivity of H1299 cells, while both chk1 inhibitor-abolished G2 arrest and inhibition of chk2-mediated events such as downregulation of radiation-induced p21 expression were required for enhancing radiosensitivity of A549 cells. Collectively, our findings reveal a novel role of DAP3 to regulate G2/M arrest through pchk1 in irradiated LUAD cells and suggest that chk1-mediated G2/M arrest regulates the radioresistance of H1299 cells, whereas both the chk1-mediated G2/M arrest and the chk2-mediated events contribute to the radioresistance of A549 cells.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Quinase 1 do Ponto de Checagem , Ciclo Celular/efeitos da radiação , Proteínas de Ligação a RNA , Proteínas Reguladoras de Apoptose/metabolismo
4.
Biomed Rep ; 18(4): 28, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36926187

RESUMO

Radioresistant cancer cells lead to poor prognosis after radiotherapy. However, the mechanisms underlying cancer cell radioresistance have not been fully elucidated. Thus, the DNA damage response of clinically relevant radioresistant oral squamous cell carcinoma HSC2-R cells, established by long-term exposure of parental HSC2 cells to fractionated radiation, was investigated. The DNA double-strand break (DSB) repair protein-specific inhibitor, NU7441, which targets DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation, and IBR2, which targets Rad51, were administered to HSC2 and HSC2-R cells. NU7441 administration eliminated colony formation in both cell lines under 6 Gy X-ray irradiation, whereas IBR2 did not affect colony formation. NU7441 and IBR2 significantly enhanced 6 Gy X-ray irradiation-induced apoptosis in HSC2-R cells. In HSC2-R cells, cell cycle arrest released earlier than in HSC2 cells, and phosphorylated-H2A histone family member X (γH2AX) expression rapidly decreased. Following NU7441 administration, γH2AX expression and the cell percentages of the G2/M phase were not decreased at 48 h after treatment in HSC2-R cells. DNA-PKcs has been demonstrated to regulate non-homologous end-joining (NHEJ) and homologous recombination (HR) repair, and the later phase of DSB repair is dominated by HR. Therefore, the results of the present study indicated that the DSB repair mechanism in HSC2-R cells strongly depends on NHEJ and loss of HR repair function. The present study revealed a potential mechanism underlying the acquired radioresistance and therapeutic targets in radioresistant cancer cells.

5.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497040

RESUMO

Radioresistant (RR) cells are poor prognostic factors for tumor recurrence and metastasis after radiotherapy. The hyaluronan (HA) synthesis inhibitor, 4-methylumbelliferone (4-MU), shows anti-tumor and anti-metastatic effects through suppressing HA synthase (HAS) expression in various cancer cells. We previously reported that the administration of 4-MU with X-ray irradiation enhanced radiosensitization. However, an effective sensitizer for radioresistant (RR) cells is yet to be established, and it is unknown whether 4-MU exerts radiosensitizing effects on RR cells. We investigated the radiosensitizing effects of 4-MU in RR cell models. This study revealed that 4-MU enhanced intracellular oxidative stress and suppressed the expression of cluster-of-differentiation (CD)-44 and cancer stem cell (CSC)-like phenotypes. Interestingly, eliminating extracellular HA using HA-degrading enzymes did not cause radiosensitization, whereas HAS3 knockdown using siRNA showed similar effects as 4-MU treatment. These results suggest that 4-MU treatment enhances radiosensitization of RR cells through enhancing oxidative stress and suppressing the CSC-like phenotype. Furthermore, the radiosensitizing mechanisms of 4-MU may involve HAS3 or intracellular HA synthesized by HAS3.


Assuntos
Hialuronan Sintases , Himecromona , Neoplasias Bucais , Radiossensibilizantes , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Hialuronan Sintases/genética , Neoplasias Bucais/radioterapia , Recidiva Local de Neoplasia , Radiossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Tolerância a Radiação , Himecromona/farmacologia
6.
Cells ; 11(9)2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563740

RESUMO

Cyclic GMP-AMP synthase (cGAS) plays an important role in biological responses to pathogens. The activation of the cGAS pathway in immune cells is known to induce antitumor effects, but the role of cGAS in cancer cells remains poorly understood. In silico analysis using public databases suggested that high cGAS expression in head and neck squamous cell carcinoma (HNSCC) is indicative of a poor prognosis for HNSCC patients. We therefore investigated the role of cGAS in malignancies and the cellular radiation response of human HNSCC cells (SAS and Ca9-22) in vitro, because radiotherapy is one of the treatments most commonly used for HNSCC. Although cGAS knockdown failed to suppress the proliferation of non-irradiated HNSCC cells, it enhanced the radiosensitivity of HNSCC cells. The administration of the cGAS agonist increased the radioresistance of HNSCC cells. cGAS knockdown increased radiation-induced mitotic catastrophe, apoptosis, or cellular senescence, depending on the cell line, and this cell line-dependent response might be due to different responses of p21 after irradiation. Collectively, our findings indicate that the cGAS pathway regulates the radioresistance of HNSCC cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Apoptose/efeitos da radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Nucleotidiltransferases/metabolismo , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
7.
Acta Histochem Cytochem ; 54(1): 1-9, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33731965

RESUMO

The ciliary zonules, also known as the zonules of Zinn, help to control the thickness of the lens during focusing. The ciliary zonules are composed of oxytalan fibers, which are synthesized by human nonpigmented ciliary epithelial cells (HNPCEC). The ciliary zonules are exposed to ultraviolet (UV), especially UV-A and UV-B, throughout life. We previously demonstrated that UV-B, but not UV-A, degrades fibrillin-1- and fibrillin-2-positive oxytalan fibers. However, the mechanism by which UV-B degrades oxytalan fibers remains unknown. In this study, we investigate the involvement of matrix metalloproteinase-2 (MMP-2) in the UV-B-induced degradation of fibrillin-1- and fibrillin-2-positive oxytalan fibers in cultured HNPCECs. Enzyme-linked immunosorbent assay revealed that UV-B irradiation at levels of 100 and 150 mJ/cm2 significantly increased the level of active MMP-2. Notably, MMP-2 inhibitors completely suppressed the degradation of fibrillin-1- and fibrillin-2-positive oxytalan fibers. In addition, we show that UV-B activates MMP-2 via stress-responsive kinase p38. Taken together, the results suggest that UV-B activates a production of active type of MMP-2 via the p38 pathway, and subsequently, an active-type MMP-2 degrades the fibrillin-1- and fibrillin-2-positive oxytalan fibers in cultured HNPCECs.

8.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401559

RESUMO

Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.


Assuntos
Adenocarcinoma de Pulmão/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Poli I-C/farmacologia , Proteínas de Ligação a RNA/metabolismo , Radiação Ionizante , Receptores Imunológicos/agonistas , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/radioterapia , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Proteína DEAD-box 58 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas
9.
Oncol Lett ; 19(4): 2801-2808, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32218833

RESUMO

The inflammatory response is closely associated with cancer cell survival. It has been reported that inflammatory signaling cascades promote tumor survival and exert detrimental effects in normal tissue. Hyaluronans have different cellular functions depending on their molecular weights and high molecular weight-hyaluronan (HMW-HA) exhibits anti-inflammatory effects. A previous study determined that the co-administration of 4-methylumbelliferone (4-MU) and X-ray irradiation enhanced anti-tumor and anti-inflammatory effects in HT1080 human fibrosarcoma cells. However, many mechanisms underlie the effect of hyaluronan molecular weight on cells and the induction of anti-inflammatory effects via 4-MU. The present study aimed to determine the relationship between hyaluronan synthesis inhibition by 4-MU and its anti-inflammatory and radio-sensitizing effect in the context of hyaluronan molecular weight. The hyaluronan concentration following 2 Gy X-ray irradiation and/or 4-MU administration was analyzed via ELISA. Additionally, the mRNA expressions of hyaluronan synthase (HAS) by 4-MU and various inflammatory cytokines and interleukins (IL) following exogenous HMW-HA administration were evaluated via Reverse transcription-quantitative PCR. Invasive potential was assessed by matrigel transwell assays and cell survival following exposure to 4-MU with HMW-HA was determined using a clonogenic potency assay. The results of the present study demonstrated that 4-MU suppressed HMW-HA production by inhibiting HAS2 and HAS3 expression. In addition, the surviving fraction of fibrosarcoma cells were rescued from the cell-killing effect of 4-MU via the exogenous administration of HMW-HA. The mRNA levels of certain inflammatory cytokines, including IL-1α, IL-36γ and IL-37 were elevated following HMW-HA administration. The surviving fraction of cells irradiated with 2 Gy alone did not increase following exogenous HMW-HA administration. The results of the present study indicated that the radio-sensitizing effect of 4-MU and the inhibitory effect on hyaluronan synthesis were not closely associated. It was also revealed that IL-1α, IL-36γ and IL-37 were associated with the cell-killing effect of 4-MU in HT1080 cells.

10.
Curr Cancer Drug Targets ; 20(5): 372-381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951181

RESUMO

BACKGROUND: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play key roles in the antiviral response, but recent works show that RLR activation elicits anticancer activity as well, including apoptosis. Previously, we demonstrated that the anticancer activity of the RLR agonist Poly(I:C)-HMW/LyoVec™ [Poly(I:C)-HMW] against human lung cancer cells was enhanced by cotreatment with ionizing radiation (IR). In addition, cotreatment with Poly(I:C)-HMW and IR induced apoptosis in a Fas-independent manner, and increased Fas expression on the cell surface. OBJECTIVE: The current study investigated the resultant hypothesis that Fas ligand (FasL) may enhance apoptosis in lung cancer cells cotreated with Poly(I:C)-HMW+IR. METHODS: FasL was added into culture medium at 24 h following cotreatment with Poly(I:C)- HMW+IR, after upregulation of cell surface Fas expression on human lung cancer cells A549 and H1299 have already been discussed. RESULTS: FasL enhanced the apoptosis of A549 and H1299 cells treated with Poly(I:C)-HMW+IR. Similarly, IR alone - and not Poly(I:C)-HMW - resulted in the upregulation of cell surface Fas expression followed by a high response to FasL-induced apoptosis, thus suggesting that the high sensitivity of cells treated with Poly(I:C)-HMW+IR to FasL-induced apoptosis resulted from the cellular response to IR. Finally, knockdown of Fas by siRNA confirmed that the high response of treated cells to FasL-induced apoptosis is dependent on Fas expression. CONCLUSION: In summary, the present study indicates that upregulated Fas expression following cotreatment with Poly(I:C)-HMW and IR is responsive to FasL-induced apoptosis, and a combination of RLR agonist, IR, and FasL could be a potential promising cancer therapy.


Assuntos
Antivirais/farmacologia , Apoptose , Quimiorradioterapia/métodos , Proteína Ligante Fas/metabolismo , Neoplasias Pulmonares/patologia , Poli I-C/farmacologia , Receptores Imunológicos/agonistas , Proliferação de Células , Proteína DEAD-box 58 , Proteína Ligante Fas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Células Tumorais Cultivadas
11.
Oncol Lett ; 17(3): 3555-3561, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30867797

RESUMO

Tumor recurrence and distant metastasis following radiotherapy, which can lead to poor prognosis, are caused by residual cancer cells that acquire radioresistance. Chemotherapy or a combination of targeted inhibitors can potentially enhance radiation sensitivity and prevent metastasis. It was previously reported that co-administration of the hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) enhanced the lethality of X-ray irradiation in HT1080 human fibrosarcoma cells and decreased their invasiveness to a greater extent than either treatment alone. To clarify the molecular basis of these effects, the present study conducted mRNA expression profiling by cDNA microarray to identify the signaling pathways that are altered under this combination treatment. The activation state of the signaling pathways was classified by z-scores in the Ingenuity Pathway Analysis. The results revealed that the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 were activated by 2 Gy X-ray irradiation, an effect that was abolished by co-administration of 4-MU. Similar trends were observed for the upstream signaling component IL-1. These results indicate that the radiosensitivity of fibrosarcoma cells is improved by suppressing inflammation through the administration of 4-MU.

12.
Acta Histochem Cytochem ; 50(3): 105-109, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28744027

RESUMO

The ciliary zonules link the lens to the ciliary body in the eye, controlling the thickness of the lens for focusing through their characteristic elasticity. The ciliary zonules are composed of oxytalan fibers. Physiological or pathological damage to the ciliary zonules, including exposure to ultraviolet (UV)-A and UV-B components, can lead to lens dislocation. However, no studies have shown whether UV affects the ciliary zonule. Here, we assessed the effects of UV light on human nonpigmented ciliary epithelial cells (HNPCECs). HNPCECs were cultured for 4 weeks, and expression of fibrillin-1 and fibrillin-2 was confirmed. In control cultures (0 mJ/cm2), some fibrillin-1-positive fibers were merged with fibrillin-2. After UV-A irradiation, the appearance of both fibrillin-1- and fibrillin-2-positive fibers was unchanged. However, after UV-B irradiation, fibrillin-1-positive fibers became thin at an irradiation level of 100 mJ/cm2, and the fiber structure became amorphous at 150 mJ/cm2. Fibrillin-2-positive fibers lost their continuity and disappeared after being exposed to 150 mJ/cm2 UV-B. UV-B irradiation did not affect cell viability, possibly because of the sensitivity of fibrillin-1 and fibrillin-2 to UV-B. Thus, dislocation of the lens with age may be attributable to cumulative exposure to UV-B.

13.
J Radiat Res ; 58(6): 782-790, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28595296

RESUMO

Enhanced cell lethality, also known as hyper-radiosensitivity, has been reported at low doses of radiation (≤0.5 Gy) in various cell lines, and is expected to be an effective cancer therapy. We conducted this study to examine the impact of time interval and dose rate of low-dose fractionated exposures with a short time interval. We evaluated the cell-survival rates of V79 and A549 cells using clonogenic assays. We performed fractionated exposures in unit doses of 0.25, 0.5, 1.0 and 2.0 Gy. We exposed the cells to 2 Gy of X-rays (i) at dose-rates of 1.0, 1.5 and 2.0 Gy/min at 1-min intervals and (ii) at a dose-rate of 2.0 Gy/min at 10-s, 1-min and 3-min intervals by fractionated exposures. Apoptosis and cell cycle analyses were also evaluated in the fractionated exposures (unit dose 0.25 Gy) and compared with single exposures by using flow cytometry. Both cell-type survival rates with fractionated exposures (unit dose 0.25 Gy) with short time intervals were markedly lower than those for single exposures delivering the same dose. When the dose rates were lower, the cytotoxic effect decreased compared with exposure to a dose-rate of 2.0 Gy/min. On the other hand, levels of apoptosis and cell cycle distribution were not significantly different between low-dose fractionated exposures and single exposures in either cell line. These results indicate that a stronger cytotoxic effect was induced with low-dose fractionated exposures with a short time interval for a given dose due to the hyper-radiosensitivity phenomenon, suggesting that dose rates are important for effective low-dose fractionated exposures.


Assuntos
Fracionamento da Dose de Radiação , Animais , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Clonais , Relação Dose-Resposta à Radiação , Humanos , Fatores de Tempo
14.
Biomed Res ; 38(1): 61-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239033

RESUMO

In tooth root development, periodontal ligament (PDL) and cementum are formed by the coordination with the fragmentation of Hertwig's epithelial root sheath (HERS) and the differentiation of dental follicle mesenchymal cells. However, the function of the dental epithelial cells after HERS fragmentation in the PDL is not fully understood. Here, we found that TGF-ß regulated HERS fragmentation via epithelial-mesenchymal transition (EMT), and the fragmented epithelial cells differentiated into PDL fibroblastic cells with expressing of PDL extracellular matrix (ECM). In the histochemical analysis, TGF-ß was expressed in odontoblast layer adjacent of HERS during root development. Periostin expression was detected around fragmented epithelial cells on the root surface, but not in HERS. In the experiment using an established mouse HERS cell line (HERS01a), TGF-ß1 treatment decreased E-cadherin and relatively increased N-cadherin expression. TGF-ß1 treatment in HERS01a induced further expression of important ECM proteins for acellular cementum and PDL development such as fibronectin and periostin. Taken together, activation of TGF-ßsignaling induces HERS fragmentation through EMT and the fragmented HERS cells contribute to formation of PDL and acellular cementum through periostin and fibronectin expression.


Assuntos
Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/fisiologia , Ligamento Periodontal/citologia , Raiz Dentária/citologia , Fator de Crescimento Transformador beta1/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cemento Dentário/citologia , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Odontoblastos/citologia , Odontoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/genética
15.
Biomed Rep ; 6(1): 103-107, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123717

RESUMO

The present study hypothesized that the therapeutic use of ascorbic acid (AsA) in combination with radiation may reduce therapy-related side effects and increase the antitumor effects. The aim of the study was to examine the association between the scavenged activity of AsA and the biological anticancer effect of hydroxyl (OH) radicals generated by X-ray irradiation. Cell survival, DNA fragmentation of human leukemia HL60 cells and the amount of OH radicals were investigated following X-ray irradiation and AsA treatment. The number of living cells decreased, and DNA fragmentation increased at AsA concentrations >1 mM. Electron spin resonance spectra revealed that X-ray irradiation generated OH radicals, which were scavenged by AsA at concentrations >75 µM. The AsA concentration inside the cell was 75 µM when cells underwent extracellular treatment with 5 mM AsA, which significantly induced HL60 cell death even without irradiation. No increase in the number of viable HL60 cells was observed following AsA treatment with irradiation when compared to irradiation alone. In conclusion, the disappearance of the radiation anticancer effects with AsA treatment in combination with radiotherapy for cancer treatment is not a cause for concern.

16.
Int. j. morphol ; 32(2): 618-626, jun. 2014. ilus
Artigo em Inglês | LILACS | ID: lil-714319

RESUMO

Amelogenin is one of the enamel matrix proteins secreted by ameloblasts during enamel formation in tooth development. Recent studies showed that the amelogenin is expressed in chondrocyte. Lysosome-associated membrane proteins (LAMPs) have been identified as binding partner proteins to amelogenin and it has been suggested they act as signaling receptors of amelogenin. The purpose of this study is to clarify the localization of amelogenin and LAMPs in growth plate cartilage and cartilaginous nodules in micromass culture. Mouse knee joints including tibia growth plate at 4 weeks old and micromass cultures of limb bud mesenchymal cells after 2 weeks were fixed in paraformaldehyde, routinely processed, sections were cut and immunostained with amelogenin, collagen type II and type X, LAMP-1 and -3. The positive immunoreaction of amelogenin was observed both in proliferation and hypertrophic zone cartilage of growth plate after enzymatic pretreatment in immunostaining. Furthermore, cartilaginous nodules in micromass culture were immunopositive to amelogenin. The chondrocytes in the proliferation zone of the growth plate were immunopositive to LAMP-1 but weakly stained in the chondrocytes of hypertrophic zone. These observations indicate that amelogenin may be present in cartilage matrix produced in vivo and in vitro and amelogenin may involve cartilage formation through the LAMP-1 signaling pathway.


La amelogenina es una de las proteínas de la matriz del esmalte secretadas por ameloblastos durante la formación del esmalte en el desarrollo dentario. Estudios recientes demuestran que la amelogenina se expresa en los condrocitos. Las proteínas de membrana asociadas a lisosomas (LAMPs) se han identificado como proteínas de unión asociadas a la amelogenina; se ha sugerido que actúan como receptores de señalización de la amelogenina. El propósito de este estudio fue aclarar la localización de la amelogenina y las LAMPs en el cartílago de crecimiento y nódulos cartilaginosos en cultivos de micromasa. Articulaciones de la rodilla del ratón, que incluían la placa de crecimiento tibial de 4 semanas de edad y cultivos de micromasa de células mesenquimales del brote del miembro después de 2 semanas se fijaron en paraformaldehído y procesaron rutinariamente. Los cortes fueron sometidos a inmunotinción con amelogenina, colágeno tipo II y X, LAMP-1 y LAMP-3 . Se observó inmunorreacción positiva de amelogenina tanto en la zona proliferación e hipertrófica del cartílago de crecimiento después del pretratamiento enzimático. Además, los nódulos cartilaginosos en el cultivo de micromasa eran inmunopositivos para la amelogenina. Los condrocitos en la zona de proliferación de la placa de crecimiento fueron immunopositivos a LAMP-1, mientras que los condrocitos de la zona hipertrófica se tiñeron débilmente. Estas observaciones indican que la amelogenina puede estar presente en la matriz del cartílago producida tanto in vivo e in vitro, además la amelogenina puede estar implicada en la formación de cartílago mediante la vía de señalización de LAMP-1.


Assuntos
Animais , Camundongos , Proteínas de Membrana Lisossomal/metabolismo , Amelogenina/metabolismo , Coloração e Rotulagem , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Condrogênese , Proteínas de Membrana Lisossomal/genética , Camundongos Endogâmicos C57BL
17.
PLoS One ; 9(5): e97165, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24835775

RESUMO

The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-ß in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/induzido quimicamente , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Lipopolissacarídeos/toxicidade , Porphyromonas gingivalis/química , Receptor 2 Toll-Like/metabolismo , Análise de Variância , Animais , Colágeno Tipo I/metabolismo , Diabetes Mellitus Experimental , Hibridização In Situ , Interleucina-6/metabolismo , Glomérulos Renais/citologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Acta Histochem Cytochem ; 47(1): 11-7, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24761045

RESUMO

The ciliary zonule in the eye, also known as Zinn's zonule, is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1. However, it is still unclear which of the microfibril-associated molecules present in the ciliary zonule controls oxytalan fibers. Microfibril-associated glycoprotein-1 (MAGP-1) is the only microfibril-associated molecule identified in the human ciliary zonule. In the present study, we used siRNA against MAGP-1 in cultures of human non-pigmented ciliary epithelial cells to examine the extracellular deposition and appearance of fibrillin-1 employing Western blotting and immunofluorescence. MAGP-1 suppression led to a reduction of fibrillin-1 deposition. Immunofluorescence also confirmed that RNAi-mediated down-regulation of MAGP-1 led to suppression of fiber development. These results suggest that MAGP-1 plays a crucial role in the extracellular deposition of fibrillin-1 during formation of the human ciliary zonule.

19.
Horm Cancer ; 5(2): 90-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497297

RESUMO

Oral squamous cell carcinomas (OSCC) are the most common malignant neoplasms associated with mucosal surfaces of the oral cavity and oropharynx. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is implicated as an anticancer agent. Cytochrome P450 2R1 (CYP2R1) is a microsomal vitamin D 25-hydroxylase which plays an important role in converting dietary vitamin D to active metabolite, 25-(OH)D3. We identified high levels of CYP2R1 expression using tissue microarray of human OSCC tumor specimens compared to normal adjacent tissue. Therefore, we hypothesize that 1,25(OH)2D3 regulates CYP2R1 gene expression in OSCC tumor cells. Interestingly, real-time RT-PCR analysis of total RNA isolated from OSCC cells (SCC1, SCC11B, and SCC14a) treated with 1,25(OH)2D3 showed a significant increase in CYP2R1 and vitamin D receptor (VDR) mRNA expression. Also, Western blot analysis demonstrated that 1,25(OH)2D3 treatment time-dependently increased CYP2R1 expression in these cells. 1,25(OH)2D3 stimulation of OSCC cells transiently transfected with the hCYP2R1 promoter (-2 kb)-luciferase reporter plasmid demonstrated a 4.3-fold increase in promoter activity. In addition, 1,25(OH)2D3 significantly increased c-Fos, p-c-Jun expression, and c-Jun N-terminal kinase (JNK) activity in these cells. The JNK inhibitor suppresses 1,25(OH)2D3, inducing CYP2R1 mRNA expression and gene promoter activity in OSCC cells. Furthermore, JNK inhibitor significantly decreased 1,25(OH)2D3 inhibition of OSCC tumor cell proliferation. Taken together, our results suggest that AP-1 is a downstream effector of 1,25(OH)2D3 signaling to modulate CYP2R1 gene expression in OSCC tumor cells, and vitamin D analogs could be potential therapeutic agents to control OSCC tumor progression.


Assuntos
Calcitriol/farmacologia , Carcinoma de Células Escamosas/genética , Colestanotriol 26-Mono-Oxigenase/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/genética , Antracenos/farmacologia , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450 , Humanos , Imuno-Histoquímica , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Vitaminas/farmacologia
20.
Acta Histochem Cytochem ; 46(5): 153-9, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24194629

RESUMO

Oxytalan fibers are distributed in the eye and periodontal ligaments (PDL). The ciliary zonule, known as Zinn's zonule, in the eye is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1 and fibrillin-2. As turnover of oxytalan fibers is slow during life, their degradation mechanism remains unclarified. This study was performed to examine degradation pattern of fibrillin-1 and fibrillin-2 by experimental MMP activation. We cultured human non-pigmented ciliary epithelial cells (HNPCEC) and PDL fibroblasts for 7 days, then treated them with concanavalin A to activate matrix metalloproteinase (MMP)-2, and examined the degradation of fibrillin-1 and fibrillin-2 for 72 hr using immunofluorescence. At 7 days of HNPCEC culture, fibrillin-1-positive fibers were observed, some of which merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin and disappeared by 72 hr, while fibrillin-2-positive fibers disappeared almost completely within 24 hr. At 7 days of PDL fibroblast culture, fibrillin-1-positive fibers were mostly merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin by 24 hr and had almost disappeared by 48 hr, while fibrillin-2-positive fibers decreased constantly after 24 hr. A MMP-2 inhibitor completely suppressed these degradations. These results suggest that the patterns of fibrillin-1 and fibrillin-2 degradation differ between the eye and the PDL, possibly reflecting the sensitivity of fibrillin-1 and fibrillin-2 of each type of oxytalan fiber against MMP-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA