Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2383, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185464

RESUMO

The bone marrow contains various populations of skeletal stem cells (SSCs) in the stromal compartment, which are important regulators of bone formation. It is well-described that leptin receptor (LepR)+ perivascular stromal cells provide a major source of bone-forming osteoblasts in adult and aged bone marrow. However, the identity of SSCs in young bone marrow and how they coordinate active bone formation remains unclear. Here we show that bone marrow endosteal SSCs are defined by fibroblast growth factor receptor 3 (Fgfr3) and osteoblast-chondrocyte transitional (OCT) identities with some characteristics of bone osteoblasts and chondrocytes. These Fgfr3-creER-marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by Lepr-cre-marked stromal cells in adult stages. Further, Fgfr3+ endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor through unregulated self-renewal and aberrant osteogenic fates. Therefore, Fgfr3+ endosteal SSCs are abundant in young bone marrow and provide a robust source of osteoblasts, contributing to both normal and aberrant osteogenesis.


Assuntos
Medula Óssea , Osteogênese , Adulto , Humanos , Idoso , Osteogênese/genética , Medula Óssea/metabolismo , Osso e Ossos , Osteoblastos/metabolismo , Células-Tronco , Carcinogênese/genética , Carcinogênese/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
2.
Clin Oral Investig ; 27(3): 1043-1053, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35969316

RESUMO

OBJECTIVES: This study investigated the surface characteristics of denture base resin coatings prepared using a novel silica-based film containing hinokitiol and assessed the effect of this coating on Candida albicans adhesion and growth. METHODS: Silica-based coating solutions (control solution; CS) and CS containing hinokitiol (CS-H) were prepared. C. albicans biofilm formed on denture base specimens coated with each solution and these uncoated specimens (control) were analyzed using colony-forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). Specimen surfaces were analyzed by measuring the surface roughness and wettability and with Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR). Stability of coated specimens was assessed via immersion in water for 1 week for each group (control-1w, CS-1w, and CS-H-1w) followed by CFU assay, measurement of surface roughness and wettability, and FT-IR. RESULTS: CS-H and CS-H-1w contained significantly lower CFUs than those present in the control and control-1w, which was also confirmed via SEM. Fluorescence microscopy from the CS-H group identified several dead cells. The values of surface roughness from coating groups were significantly less than those from the control and control-1w. The surface wettability from all coating groups exhibited high hydrophobicity. FT-IR analyses demonstrated that specimens were successfully coated, and 1H NMR analyses showed that hinokitiol was incorporated inside CS-H. CONCLUSIONS: A silica-based denture coating that incorporates hinokitiol inhibits C. albicans growth on denture. CLINICAL RELEVANCE: We provide a novel antifungal denture coating which can be helpful for the treatment of denture stomatitis.


Assuntos
Polimetil Metacrilato , Dióxido de Silício , Polimetil Metacrilato/química , Propriedades de Superfície , Dióxido de Silício/química , Bases de Dentadura/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Candida albicans , Antifúngicos/farmacologia , Biofilmes , Teste de Materiais
3.
Nat Commun ; 13(1): 7319, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443296

RESUMO

In endochondral bone development, bone-forming osteoblasts and bone marrow stromal cells have dual origins in the fetal cartilage and its surrounding perichondrium. However, how early perichondrial cells distinctively contribute to developing bones remain unidentified. Here we show using in vivo cell-lineage analyses that Dlx5+ fetal perichondrial cells marked by Dlx5-creER do not generate cartilage but sustainably contribute to cortical bone and marrow stromal compartments in a manner complementary to fetal chondrocyte derivatives under the regulation of Hedgehog signaling. Postnatally, Dlx5+ fetal perichondrial cell derivatives preferentially populate the diaphyseal marrow stroma with a dormant adipocyte-biased state and are refractory to parathyroid hormone-induced bone anabolism. Therefore, early perichondrial cells of the fetal cartilage are destined to become an adipogenic subset of stromal cells in postnatal diaphyseal bone marrow, supporting the theory that the adult bone marrow stromal compartments are developmentally prescribed within the two distinct cells-of-origins of the fetal bone anlage.


Assuntos
Cartilagem , Proteínas Hedgehog , Adulto , Humanos , Osso e Ossos , Desenvolvimento Ósseo , Condrócitos
4.
Diagnostics (Basel) ; 12(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885438

RESUMO

Detecting early-stage oral cancer and precancerous lesions are critical to improving patient prognosis and quality of life after treatment. Photodynamic diagnosis using 5-aminolevulinic acid enables the detection of malignant lesions. This study aimed to improve the diagnostic accuracy of photodynamic diagnosis using an objective chromaticity analysis of fluorescence emitted from oral lesions. Sixty-seven patients with clinically suspicious oral cavity lesions underwent photodynamic diagnosis after topical application of 5-aminolevulinic acid solution, followed by imaging and histological evaluation of the lesions. Chromaticity red and green values were measured from the fluorescence images on the lesion, and the red-to-green ratio was calculated. The photodynamic diagnosis allowed for the visualization of oral cancer and high-risk dysplasia as red fluorescence. Compared to low-risk dysplasia and benign lesions, oral cancer and high-risk dysplasia areas had a significantly higher red value and red-to-green ratio. After setting the cutoff value, sensitivity and specificity were 83.3-88.7% and 83.3-83.9%, respectively, when discriminating between oral cancer or high-risk dysplasia and low-risk dysplasia or benign lesions. Photodynamic diagnosis combined with chromaticity analysis may be a valuable diagnostic tool for detecting oral lesions, with a high likelihood of malignant transformation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35329324

RESUMO

Masks are effective for preventing the spread of COVID-19 and other respiratory infections. If antimicrobial properties can be applied to the non-woven fabric filters in masks, they can become a more effective countermeasure against human-to-human and environmental infections. We investigated the possibilities of carrying antimicrobial agents on the fiber surfaces of non-woven fabric filters by applying silica-resin coating technology, which can form silica-resin layers on such fabrics at normal temperature and pressure. Scanning electron microscopy and electron probe microanalysis showed that a silica-resin layer was formed on the fiber surface of non-woven fabric filters. Bioassays for coronavirus and quantitative reverse transcription-polymerase chain reactions (RT-PCR) revealed that all antimicrobial agents tested loaded successfully onto non-woven fabric filters without losing their inactivation effects against the human coronavirus (inhibition efficacy: >99.999%). These results indicate that this technology could be used to load a functional substance onto a non-woven fabric filter by vitrifying its surface. Silica-resin coating technology also has the potential of becoming an important breakthrough not only in the prevention of infection but also in various fields, such as prevention of building aging, protection of various cultural properties, the realization of a plastic-free society, and prevention of environmental pollution.


Assuntos
COVID-19 , Dióxido de Silício , Antivirais , COVID-19/prevenção & controle , Humanos , Máscaras , Têxteis
6.
Lasers Med Sci ; 37(4): 2311-2319, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35034224

RESUMO

We investigated whether irradiation with 405-nm blue LED light could inhibit the growth of not only single- but dual-species biofilms formed by Candida albicans and Streptococcus mutans on denture base resin and cause the alteration in gene expression related to adhesion and biofilm formation. C. albicans and S. mutans single-/dual-species biofilms were formed on the denture base specimens. The biofilms were irradiated with 405-nm blue LED light (power density output: 280 mW/cm2) for 0 (control) and 40 min. Dual-species biofilms were analyzed using CFU assay and fluorescence microscopy, and single-/dual-species biofilms were analyzed using alamarBlue assays and gene expression analysis. To assess the inhibitory effect of irradiation on dual-species biofilms, specimens after irradiation were aerobically incubated for 12 h. After incubation, the inhibition of growth was assessed using CFU assays and fluorescence microscopy. Data were analyzed using the Mann-Whitney U or Student's t test (p < 0.05). Irradiation produced a significant inhibitory effect on biofilms. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation, and there was no notable difference in biofilm thickness immediately after irradiation and after irradiation and incubation for 12 h. alamarBlue assays indicated the growth of the biofilms was inhibited for 12-13 h. The expression of genes associated with adhesion and biofilm formation-als1 in C. albicans and ftf, gtfC, and gtfB in S. mutans-significantly reduced by irradiation. Irradiation with 405-nm blue LED light effectively inhibited the growth of C. albicans and S. mutans dual-species biofilms for 12 h.


Assuntos
Candida albicans , Streptococcus mutans , Biofilmes , Bases de Dentadura , Humanos , Luz , Streptococcus mutans/genética
7.
Lasers Med Sci ; 37(2): 857-866, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33931832

RESUMO

This study investigated: (1) the microbicidal effect of 405-nm blue LED light irradiation on biofilm formed by Candida albicans hyphae and Streptococcus mutans under dual-species condition on denture base resin, (2) the generation of intracellular reactive oxygen species (ROS) induced by irradiation, and (3) the existence of intracellular porphyrins, which act as a photosensitizer. Denture base resin specimens were prepared and C. albicans and S. mutans dual-species biofilms were allowed to form on the specimens. The biofilms were irradiated with 405-nm blue LED light and analyzed using the colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Single-species biofilms of C. albicans and S. mutans formed on the specimens were irradiated with 405-nm blue LED light. After the irradiation, the intracellular ROS levels in C. albicans and S. mutans cells were measured. In addition, the level of intracellular porphyrins in C. albicans and S. mutans were measured. Irradiation for more than 30 min significantly inhibited the colony formation ability of C. albicans and S. mutans. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation. SEM images showed various cell damage patterns. Irradiation led to the generation of intracellular ROS and porphyrins were present in both C. albicans and S. mutans cells. In conclusion, irradiation with 405-nm blue light-emitting diode light for 40 min effectively disinfect C. albicans hyphae and S. mutans dual-species biofilms and possibly react with intracellular porphyrins resulting in generation of ROS in each microorganism.


Assuntos
Candida albicans , Streptococcus mutans , Biofilmes , Bases de Dentadura , Fármacos Fotossensibilizantes/farmacologia
8.
PLoS One ; 16(12): e0261180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890423

RESUMO

This study aimed to investigate the effect of ozone ultrafine bubble water (OUFBW) on the formation and growth of Candida albicans (C. albicans) biofilms and surface properties of denture base resins. OUFBWs were prepared under concentrations of 6 (OUFBW6), 9 (OUFBW9), and 11 ppm (OUFBW11). Phosphate buffered saline and ozone-free electrolyte aqueous solutions (OFEAS) were used as controls. Acrylic resin discs were made according to manufacturer instructions, and C. albicans was initially cultured on the discs for 1.5 h. A colony forming unit (CFU) assay was performed by soaking the discs in OUFBW for 5 min after forming a 24-h C. albicans biofilm. The discs after initial attachment for 1.5 h were immersed in OUFBW and then cultured for 0, 3, and 5 h. CFUs were subsequently evaluated at each time point. Moreover, a viability assay, scanning electron microscopy (SEM), Alamar Blue assay, and quantitative real-time polymerase chain reaction (qRT-PCR) test were performed. To investigate the long-term effects of OUFBW on acrylic resin surface properties, Vickers hardness (VH) and surface roughness (Ra) were measured. We found that OUFBW9 and OUFBW11 significantly degraded the formed 24-h biofilm. The time point CFU assay showed that C. albicans biofilm formation was significantly inhibited due to OUFBW11 exposure. Interestingly, fluorescence microscopy revealed that almost living cells were observed in all groups. In SEM images, the OUFBW group had lesser number of fungi and the amount of non-three-dimensional biofilm than the control group. In the Alamar Blue assay, OUFBW11 was found to suppress Candida metabolic function. The qRT-PCR test showed that OUFBW down-regulated ALS1 and ALS3 expression regarding cell-cell, cell-material adhesion, and biofilm formation. Additionally, VH and Ra were not significantly different between the two groups. Overall, our data suggest that OUFBW suppressed C. albicans growth and biofilm formation on polymethyl methacrylate without impairing surface properties.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candidíase/tratamento farmacológico , Ozônio/administração & dosagem , Água/química , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Humanos , Oxidantes Fotoquímicos/administração & dosagem , Polimetil Metacrilato/química , Propriedades de Superfície
9.
PLoS One ; 14(5): e0217496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136636

RESUMO

This study aimed to investigate the cleansing effects of grapefruit seed extract (GSE) on biofilms of Candida albicans (C. albicans) formed on denture-base resin and the influence of GSE on the mechanical and surface characteristics of the resin. GSE solution diluted with distilled water to 0.1% (0.1% GSE) and 1% (1% GSE) and solutions with Polident® denture cleansing tablet dissolved in distilled water (Polident) or in 0.1% GSE solution (0.1% G+P) were prepared as cleansing solutions. Discs of acrylic resin were prepared, and the biofilm of C. albicans was formed on the discs. The discs with the biofilm were treated with each solution for 5 min at 25°C. After the treatment, the biofilm on the discs was analyzed using a colony forming unit (CFU) assay, fluorescence microscopy, and scanning electron microscopy (SEM). In order to assess the persistent cleansing effect, the discs treated with each solution for 5 min were aerobically incubated in Yeast Nitrogen Base medium for another 24 h. After incubation, the persistent effect was assessed by CFU assay. Some specimens of acrylic resin were immersed in each solution for 7 days, and changes in surface roughness (Ra), Vickers hardness (VH), flexural strength (FS), and flexural modulus (FM) were evaluated. As a result, the treatment with 1% GSE for 5 min almost completely eliminated the biofilm formed on the resin; whereas, the treatment with 0.1% GSE, Polident, and 0.1% G+P for 5 min showed a statistically significant inhibitory effect on biofilms. In addition, 0.1% GSE and 0.1% G+P exerted a persistent inhibitory effect on biofilms. Fluorescence microscopy indicated that Polident mainly induced the death of yeast, while the cleansing solutions containing at least 0.1% GSE induced the death of hyphae as well as yeast. SEM also revealed that Polident caused wrinkles, shrinkage, and some deep craters predominantly on the cell surfaces of yeast, while the solutions containing at least 0.1% GSE induced wrinkles, shrinkage, and some damage on cell surfaces of not only yeasts but also hyphae. No significant changes in Ra, VH, FS, or FM were observed after immersion in any of the solutions. Taken together, GSE solution is capable of cleansing C. albicans biofilms on denture-base resin and has a persistent inhibitory effect on biofilm development, without any deteriorations of resin surface.


Assuntos
Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Citrus paradisi/química , Extratos Vegetais/farmacologia , Polimetil Metacrilato , Resinas Sintéticas , Sementes/química , Biofilmes/crescimento & desenvolvimento , Humanos , Extratos Vegetais/química
10.
Lasers Med Sci ; 34(7): 1457-1464, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30798389

RESUMO

This study investigated (i) the degradation effect of 405-nm blue light-emitting diode (LED) light irradiation on Candida albicans and C. glabrata biofilms formed on denture base resin and (ii) the effects of 405-nm blue LED light irradiation on the mechanical and surface characteristics of the resin. Polymethyl methacrylate denture base resin discs were prepared, and C. albicans or C. glabrata biofilms formed on the denture base resin discs. Each biofilm was irradiated with 405-nm blue LED light under a constant output power (280 mW/cm2) for different times in a moisture chamber with 100% relative humidity. Postirradiation, each biofilm was analyzed using a colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Parallelepiped specimens of acrylic resin were prepared, and changes in their flexural strength (FS), flexural modulus (FM), and surface roughness (Ra) preirradiation and postirradiation with 405-nm blue LED light were evaluated. Irradiation for 30 min completely inhibited colony formation in both Candida species. Fluorescence microscopy showed that almost all Candida cells were killed because of irradiation. SEM images showed various cell damage patterns, such as wrinkles, shrinkage, and cell surface damage. An increase in FS was noted postirradiation, but no significant changes were observed in FM and Ra preirradiation and postirradiation. In conclusion, irradiation with 405-nm blue LED light induces degradation of C. albicans and C. glabrata biofilms on denture base resin, even in the absence of photosensitizers, without resin surface deterioration.


Assuntos
Resinas Acrílicas/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Bases de Dentadura , Luz , Polimetil Metacrilato/farmacologia , Candida/ultraestrutura , Candida albicans/efeitos dos fármacos , Candida albicans/ultraestrutura , Candida glabrata/efeitos dos fármacos , Candida glabrata/ultraestrutura , Contagem de Colônia Microbiana , Fármacos Fotossensibilizantes/farmacologia , Propriedades de Superfície
11.
Arch Oral Biol ; 87: 143-150, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29291436

RESUMO

OBJECTIVE: In this study, we aimed to investigate denture-base-resin coatings prepared with a crosslinkable co-polymer containing sulfobetaine methacrylamide (SBMAm) and the relationship between their surface characteristics and the initial adhesion of Candida albicans (C. albicans). METHODS: Acrylic resin discs were coated with co-polymers containing various concentrations of SBMAm and N,N'-(4,7,10-trioxa-1,13-tridecadiamine) diacrylamide (JDA) as crosslinking agent. Uncoated discs were used as controls. An acquired pellicle was formed on each disc using artificial saliva, and the discs were immersed in a suspension of C. albicans (JCM2085) cells. After incubation, tetrazolium salt (XTT-reduction) and colony forming unit (CFU) assays were performed and the morphogenesis of C. albicans was examined using scanning electron microscopy (SEM). The surface roughness, film thickness, and the water contact angle of each disc surface were measured. RESULTS: All coating groups showed significantly lower amounts of adhered C. albicans in the XTT-reduction and CFU assays than the control, confirmed by the SEM images. Many wrinkle structures were observed on the surfaces coated with co-polymers containing more than 30% SBMAm. There were no significant differences in surface roughness among all groups. The co-polymer films on the coated discs were less than 5.0 µm in thickness, and these surfaces exhibited significantly lower mean water contact angles than the control. CONCLUSION: Crosslinkable co-polymers containing SBMAm can enhance the hydrophilicity of the surface of denture-base resins and reduce the initial adhesion of C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Bases de Dentadura , Metacrilatos/química , Materiais Revestidos Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA