RESUMO
The soilborne Gram-negative phytopathogenic beta-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) as the quorum sensing (QS) signal by the methyltransferase PhcB and senses the chemical, activating the LysR family transcriptional regulator PhcA, which regulates the QS-dependent genes responsible for QS-dependent phenotypes including virulence. The sensor histidine kinases PhcS and VsrA are reportedly involved in the regulation of QS-dependent genes. To elucidate the function of PhcS and VsrA in the active QS, we generated the phcS-deletion and vsrA-deletion mutants, which exhibited weak changes to their QS-dependent phenotypes including virulence. The phcS and vsrA-deletion mutant (ΔphcS/vsrA) had significant changes in its QS-dependent phenotypes and was nonvirulent, similar to the phcA-deletion mutant. The mutant (PhcS-H230Q) with a substitution of histidine to glutamine at amino acid position 230 in PhcS but not the mutant (VsrA-H256Q) with a substitution of histidine to glutamine at amino acid position 256 in VsrA exhibited significant changes in QS-dependent phenotypes and lost virulence. The transcriptome analysis with RNA-sequencing revealed significant alterations to the expression of QS-dependent genes in the ΔphcS/vsrA and PhcS-H230Q but not VsrA-H256Q, similar to the phcA-deletion mutant. The exogenous 3-OH MAME application led to a significantly enhanced QS-inducible major exopolysaccharide EPS I production of the strain OE1-1 and phcB-deletion mutant but not ΔphcS/vsrA and PhcS-H230Q. Collectively, results of the present genetic study suggested that PhcS contributes to QS along with VsrA and that histidine at amino acid position 230 of PhcS is required for 3-OH MAME sensing, thereby influencing QS-dependent phenotypes including virulence of the strain OE1-1. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Percepção de Quorum , Histidina Quinase/metabolismo , Histidina Quinase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência , Ralstonia/genética , Ralstonia/patogenicidade , Fenótipo , MiristatosRESUMO
Ralstonia solanacearum species complex (RSSC) shows a broad host range and is classified into four phylotypes. To compare type III effectors, we have determined the complete genome sequences of several RSSC strains, especially phylotype-I strains isolated in Japan, with different host specificity.
RESUMO
The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Percepção de Quorum , Solanum lycopersicum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ferro/metabolismo , Ralstonia/genética , Ralstonia/patogenicidade , Sideróforos/metabolismo , Deleção de Genes , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismoRESUMO
Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Metilação de DNA , RNA Interferente Pequeno , Metilação de DNA/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica de Plantas , Domínio Tudor/genética , Elementos de DNA Transponíveis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Mutação/genéticaRESUMO
The gram-negative plant-pathogenic ß-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal through methyltransferase PhcB and senses the chemical via the sensor histidine kinase PhcS. This leads to activation of the LysR family transcription regulator PhcA, which regulates the genes (QS-dependent genes) responsible for QS-dependent phenotypes, including virulence. The transcription regulator ChpA, which possesses a response regulator receiver domain and also a hybrid sensor histidine kinase/response regulator phosphore-acceptor domain but lacks a DNA-binding domain, is reportedly involved in QS-dependent biofilm formation and virulence of R. pseudosolanacearum strain GMI1000. To explore the function of ChpA in QS of OE1-1, we generated a chpA-deletion mutant (ΔchpA) and revealed that the chpA deletion leads to significantly altered QS-dependent phenotypes. Furthermore, ΔchpA exhibited a loss in its infectivity in xylem vessels of tomato plant roots, losing virulence on tomato plants, similar to the phcA-deletion mutant (ΔphcA). Transcriptome analysis showed that the transcript levels of phcB, phcQ, phcR, and phcA in ΔchpA were comparable to those in OE1-1. However, the transcript levels of 89.9% and 88.9% of positively and negatively QS-dependent genes, respectively, were significantly altered in ΔchpA compared with OE1-1. Furthermore, the transcript levels of these genes in ΔchpA were positively correlated with those in ΔphcA. Together, our results suggest that ChpA is involved in the regulation of these QS-dependent genes, thereby contributing to the behaviour in host plant roots and virulence of OE1-1.
Assuntos
Percepção de Quorum , Ralstonia solanacearum , Percepção de Quorum/genética , Transcriptoma/genética , Histidina Quinase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Phospholipid signaling plays important roles in plant immune responses. Here, we focused on two phospholipase C3 (PLC3) orthologs in the Nicotiana benthamiana genome, NbPLC3-1 and NbPLC3-2. We generated NbPLC3-1 and NbPLC3-2-double-silenced plants (NbPLC3s-silenced plants). In NbPLC3s-silenced plants challenged with Ralstonia solanacearum 8107, induction of hypersensitive response (HR)-related cell death and bacterial population reduction was accelerated, and the expression level of Nbhin1, a HR marker gene, was enhanced. Furthermore, the expression levels of genes involved in salicylic acid and jasmonic acid signaling drastically increased, reactive oxygen species production was accelerated, and NbMEK2-induced HR-related cell death was also enhanced. Accelerated HR-related cell death was also observed by bacterial pathogens Pseudomonas cichorii, P. syringae, bacterial AvrA, oomycete INF1, and TMGMV-CP with L1 in NbPLC3s-silenced plants. Although HR-related cell death was accelerated, the bacterial population was not reduced in double NbPLC3s and NbCoi1-suppressed plants nor in NbPLC3s-silenced NahG plants. HR-related cell death acceleration and bacterial population reduction resulting from NbPLC3s-silencing were compromised by the concomitant suppression of either NbPLC3s and NbrbohB (respiratory oxidase homolog B) or NbPLC3s and NbMEK2 (mitogen activated protein kinase kinase 2). Thus, NbPLC3s may negatively regulate both HR-related cell death and disease resistance through MAP kinase- and reactive oxygen species-dependent signaling. Disease resistance was also regulated by NbPLC3s through jasmonic acid- and salicylic acid-dependent pathways.
Assuntos
Nicotiana , Reguladores de Crescimento de Plantas , Nicotiana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de PlantasRESUMO
After infecting roots of tomato plants, the gram-negative bacterium Ralstonia pseudosolanacearum strain OE1-1 activates quorum sensing (QS) to induce production of plant cell wall-degrading enzymes, such as ß-1,4-endoglucanase (Egl) and ß-1,4-cellobiohydrolase (CbhA), via the LysR family transcriptional regulator PhcA and then invades xylem vessels to exhibit virulence. The phcA-deletion mutant (ΔphcA) exhibits neither the ability to infect xylem vessels nor virulence. Compared with strain OE1-1, the egl-deletion mutant (Δegl) exhibits lower cellulose degradation activity, lower infectivity in xylem vessels, and reduced virulence. In this study, we analysed functions of CbhA other than cell wall degradation activity that are involved in the virulence of strain OE1-1. The cbhA-deletion mutant (ΔcbhA) lacked the ability to infect xylem vessels and displayed loss of virulence, similar to ΔphcA, but exhibited less reduced cellulose degradation activity compared with Δegl. Transcriptome analysis revealed that the phcA expression levels in ΔcbhA were significantly lower than in OE1-1, with significantly altered expression of more than 50% of PhcA-regulated genes. Deletion of cbhA led to a significant change in QS-dependent phenotypes, similar to the effects of phcA deletion. Complementation of ΔcbhA with native cbhA or transformation of this mutant with phcA controlled by a constitutive promoter recovered its QS-dependent phenotypes. The expression level of phcA in ΔcbhA-inoculated tomato plants was significantly lower than in strain OE1-1-inoculated plants. Our results collectively suggest that CbhA is involved in the full expression of phcA, thereby contributing to the QS feedback loop and virulence of strain OE1-1.
Assuntos
Percepção de Quorum , Ralstonia solanacearum , Percepção de Quorum/fisiologia , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Retroalimentação , Celulose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
The soil-borne Gram-negative ß-proteobacterium Ralstonia solanacearum species complex (RSSC) infects tomato roots through the wounds where secondary roots emerge, infecting xylem vessels. Because it is difficult to observe the behavior of RSSC by a fluorescence-based microscopic approach at high magnification, we have little information on its behavior at the root apexes in tomato roots. To analyze the infection route of a strain of phylotype I of RSSC, R. pseudosolanacearum strain OE1-1, which invades tomato roots through the root apexes, we first developed an in vitro pathosystem using 4 day-old-tomato seedlings without secondary roots co-incubated with the strain OE1-1. The microscopic observation of toluidine blue-stained longitudinal semi-thin resin sections of tomato roots allowed to detect attachment of the strain OE1-1 to surfaces of the meristematic and elongation zones in tomato roots. We then observed colonization of OE1-1 in intercellular spaces between epidermis and cortex in the elongation zone, and a detached epidermis in the elongation zone. Furthermore, we observed cortical and endodermal cells without a nucleus and with the cell membrane pulling away from the cell wall. The strain OE1-1 next invaded cell wall-degenerated cortical cells and formed mushroom-shaped biofilms to progress through intercellular spaces of the cortex and endodermis, infecting pericycle cells and xylem vessels. The deletion of egl encoding ß-1,4-endoglucanase, which is one of quorum sensing (QS)-inducible plant cell wall-degrading enzymes (PCDWEs) secreted via the type II secretion system (T2SS) led to a reduced infectivity in cortical cells. Furthermore, the QS-deficient and T2SS-deficient mutants lost their infectivity in cortical cells and the following infection in xylem vessels. Taking together, infection of OE1-1, which attaches to surfaces of the meristematic and elongation zones, in cortical cells of the elongation zone in tomato roots, dependently on QS-inducible PCDWEs secreted via the T2SS, leads to its subsequent infection in xylem vessels.
Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Virulência , Percepção de Quorum , Ralstonia solanacearum/metabolismo , Doenças das PlantasRESUMO
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Assuntos
Embriófitas , Marchantia , Evolução Biológica , Células Germinativas Vegetais , Marchantia/genética , FilogeniaRESUMO
Non-coding transcription is an important determinant of heterochromatin formation. In Arabidopsis thaliana a specialized RNA polymerase V (Pol V) transcribes pervasively and produces long non-coding RNAs. These transcripts work with small interfering RNA to facilitate locus-specific establishment of RNA-directed DNA methylation (RdDM). Subsequent maintenance of RdDM is associated with elevated levels of Pol V transcription. However, the impact of DNA methylation on Pol V transcription remained unresolved. We found that DNA methylation strongly enhances Pol V transcription. The level of Pol V transcription is reduced in mutants defective in RdDM components working downstream of Pol V, indicating that RdDM is maintained by a mutual reinforcement of DNA methylation and Pol V transcription. Pol V transcription is affected only on loci that lose DNA methylation in all sequence contexts in a particular mutant, including mutants lacking maintenance DNA methyltransferases, which suggests that RdDM works in a complex crosstalk with other silencing pathways.
Assuntos
Arabidopsis/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Elementos de DNA Transponíveis , DNA-Citosina Metilases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Retroalimentação Fisiológica , Metiltransferases/metabolismo , RNA Longo não Codificante/biossíntese , Transcrição GênicaRESUMO
Eukaryotic genomes are pervasively transcribed, yet most transcribed sequences lack conservation or known biological functions. In Arabidopsis thaliana, RNA polymerase V (Pol V) produces noncoding transcripts, which base pair with small interfering RNA (siRNA) and allow specific establishment of RNA-directed DNA methylation (RdDM) on transposable elements. Here, we show that Pol V transcribes much more broadly than previously expected, including subsets of both heterochromatic and euchromatic regions. At already established RdDM targets, Pol V and siRNA work together to maintain silencing. In contrast, some euchromatic sequences do not give rise to siRNA but are covered by low levels of Pol V transcription, which is needed to establish RdDM de novo if a transposon is reactivated. We propose a model where Pol V surveils the genome to make it competent to silence newly activated or integrated transposons. This indicates that pervasive transcription of nonconserved sequences may serve an essential role in maintenance of genome integrity.
Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Genoma , RNA não Traduzido , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Especificidade por SubstratoRESUMO
In angiosperms, the phase transition from vegetative to reproductive growth involves the de-repression of the squamosa promoter-binding-protein-like (SPL) class of transcription factors, which is negatively regulated by the specific microRNAs (miRNAs/miRs) miR156/529 [1]. Non-vascular land plants also undergo growth-phase transition to the reproductive state, but knowledge regarding the controlling mechanisms is limited. Here, we investigate the reproductive transition in the liverwort Marchantia polymorpha, focusing on the roles of miR529c [2-4] and MpSPL2. First, we established mir529c-null mutants using CRISPR/Cas9. Even in the absence of far-red light-supplemented long-day condition, which is usually needed to induce reproductive development [5, 6], the mutant thalli developed sexual reproductive organs (gametangia) and produced gametes. Transgenic plants expressing a miR529-resistant MpSPL2 transgene also showed a similar phenotype of reproductive transition in the absence of inductive far-red light signals. In these mutants and transgenic plants, the MpSPL2 mRNA abundance was elevated. Mpspl2ko mutant plants showed successful gamete development and fertilization, which suggests that MpSPL2 is involved in, but not essential for, sexual reproduction in M. polymorpha. Furthermore, analysis of Mpspl2ko mutant and its complemented lines suggests that MpSPL2 may have a role in promotion of reproductive transition. These findings support the notion that the transition to reproductive development in liverworts is controlled by a system similar to that in angiosperms, and the miR156/529-SPL module has common significance in the control of the vegetative-to-reproductive transition during development in many land plants, including liverworts.
Assuntos
Marchantia/fisiologia , MicroRNAs/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Marchantia/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Reprodução , Fatores de Transcrição/metabolismoRESUMO
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Assuntos
Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Citoplasma/metabolismo , Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismoRESUMO
Small RNAs are key molecules in RNA silencing pathways that exert the sequence-specific regulation of gene expression and chromatin modifications in many eukaryotes. In plants, endogenous small RNAs, including microRNAs (miRNAs), trans-acting short interfering RNAs (tasiRNAs), and heterochromatic siRNAs (hc-siRNAs), play an important role in switching or orchestrating biological processes during the development and at the onset of stress responses. These endogenous and exogenous small RNAs are mainly 20-24 nucleotides in length. In addition, viral genome-derived siRNAs of similar lengths are produced during viral infection, and they exhibit anti-viral defense activity in RNA silencing pathway.Here, we introduce a method to isolate and characterize small RNA molecules possibly applicable to a wide range of plant resources and tissues. After purification from total RNAs, small RNAs were subjected to Illumina sequencing analysis using compatible reagents kits. Following the sample preparation protocol, small RNAs are ligated first at the 3'- and then at the 5'-end to the respective RNA adapters followed by reverse transcription with a set of primers to produce cDNAs with Index sequences at ends. After PCR amplification, cDNAs are subjected (after gel purification) to RNA-seq analysis. This method could be applied to isolate small RNAs from different sources and characterize small RNA profiles to compare different sets of samples, e.g., wild-type and mutant plants, plants under different stress environments, and virus-infected plants because the starting RNA material is free of contaminated starch or similar material which would block further analysis.
Assuntos
Perfilação da Expressão Gênica , Pequeno RNA não Traduzido/genética , Transcriptoma , Arabidopsis/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Marchantia/genética , MicroRNAs/genética , RNA de Plantas , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software , NavegadorRESUMO
MicroRNAs (miRNAs) have important roles in gene regulation during plant development. Previous studies revealed that some miRNAs are highly shared by most land plants. Recently, the liverwort, Marchantia polymorpha, has been studied by molecular genetic approaches, and sequencing of its genome is currently underway. The expression pattern and the detailed functions of miRNAs during Marchantia development are unknown. Here, we profiled the small RNAs expressed in thalli, antheridiophores and archegoniophores of M. polymorpha using high-throughput RNA sequencing. We revealed that a limited number of miRNAs are shared between M. polymorpha and the moss, Physcomitrella patens, and that a number of miRNAs are M. polymorpha specific. Like other land plants, cognate target genes corresponding to conserved miRNAs could be found in the genome database and were experimentally confirmed to guide cleavage of target mRNAs. The results suggested that two genes in the SPL (SQUAMOSA PROMOTER BINDING-LIKE) transcription factor family, which are regulated by miR156 in most land plants, were instead targeted by two distinct miRNAs in M. polymorpha. In order to demonstrate the physiological roles of miRNAs in M. polymorpha, we constructed an miRNA ectopic expression system to establish overexpression transformants for conserved miRNAs, miR166 and miR319. Ectopic expression of these miRNAs induced abnormal development of the thallus and gemma cups, suggesting that balanced expression of miRNA/target mRNAs has a crucial role in developmental regulation in M. polymorpha. Profiling data on miRNA together with the ectopic expression system would provide new information on the liverwort small RNA world and evolutionary divergence/conservation of small RNA function among land plants.
Assuntos
Marchantia/genética , MicroRNAs/genética , RNA de Plantas/genética , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Loci Gênicos , MicroRNAs/metabolismo , Dados de Sequência Molecular , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNARESUMO
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Flores/genética , Flores/metabolismo , MicroRNAs/genética , Fenótipo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , MicroRNAs/química , Mutação , Transcrição GênicaRESUMO
The RNA exosome is a multi-subunit complex that is responsible for 3' to 5' degradation and processing of cellular RNA. Rrp44/Dis3 is the catalytic center of the exosome in yeast and humans. However, the role of Rrp44/Dis3 homologs in plants is still unidentified. Here, we show that Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, is essential for plant viability and is required for RNA processing and degradation. We characterized AtRRP44A and AtRRP44B/SOV, two predicted Arabidopsis Rrp44/Dis3 homologs. AtRRP44A could functionally replace S. cerevisiae Rrp44/Dis3, but AtRRP44B/SOV could not. rrp44a knock-down mutants showed typical phenotypes of exosome function deficiency, 5.8S rRNA 3' extension and rRNA maturation by-product over-accumulation, but rrp44b mutants did not. Conversely, AtRRP44B/SOV mutants showed elevated levels of a selected mRNA, on which rrp44a did not have detectable effects. Although T-DNA insertion mutants of AtRRP44B/SOV had no obvious phenotype, those of AtRRP44A showed defects in female gametophyte development and early embryogenesis. These results indicate that AtRRP44A and AtRRP44B/SOV have independent roles for RNA turnover in plants.