Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Virology ; 595: 110071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593594

RESUMO

WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).


Assuntos
Apoptose , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Triticum , Triticum/virologia , Triticum/genética , Triticum/metabolismo , Doenças das Plantas/virologia , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Interações Hospedeiro-Patógeno
3.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540330

RESUMO

E3 ubiquitin ligases play a pivotal role in ubiquitination, a crucial post-translational modification process. Anaphase-promoting complex (APC), a large cullin-RING E3 ubiquitin ligase, regulates the unidirectional progression of the cell cycle by ubiquitinating specific target proteins and triggering plant immune responses. Several E3 ubiquitin ligases have been identified owing to advancements in sequencing and annotation of the wheat genome. However, the types and functions of APC E3 ubiquitin ligases in wheat have not been reported. This study identified 14 members of the APC gene family in the wheat genome and divided them into three subgroups (CCS52B, CCS52A, and CDC20) to better understand their functions. Promoter sequence analysis revealed the presence of several cis-acting elements related to hormone and stress responses in the APC E3 ubiquitin ligases in wheat. All identified APC E3 ubiquitin ligase family members were highly expressed in the leaves, and the expression of most genes was induced by the application of methyl jasmonate (MeJA). In addition, the APC gene family in wheat may play a role in plant defense mechanisms. This study comprehensively analyzes APC genes in wheat, laying the groundwork for future research on the function of APC genes in response to viral infections and expanding our understanding of wheat immunity mechanisms.


Assuntos
Triticum , Ubiquitina-Proteína Ligases , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Triticum/genética , Triticum/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Ubiquitina/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474046

RESUMO

Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.


Assuntos
Resistência à Doença , Vírus de Plantas , Humanos , Vírus de Plantas/genética , Processamento de Proteína Pós-Traducional , Doenças das Plantas , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003668

RESUMO

The ATP-binding cassette (ABC) superfamily of proteins is a group of evolutionarily conserved proteins. The ABCF subfamily is involved in ribosomal synthesis, antibiotic resistance, and transcriptional regulation. However, few studies have investigated the role of ABCF in wheat (Triticum aestivum) immunity. Here, we identified 18 TaABCFs and classified them into four categories based on their domain characteristics. Functional similarity between Arabidopsis and wheat ABCF genes was predicted using phylogenetic analysis. A comprehensive genome-wide analysis of gene structure, protein motifs, chromosomal location, and cis-acting elements was also performed. Tissue-specific analysis and expression profiling under temperature, hormonal, and viral stresses were performed using real-time quantitative reverse transcription polymerase chain reaction after randomly selecting one gene from each group. The results revealed that all TaABCF genes had the highest expression at 25 °C and responded to methyl jasmonate induction. Notably, TaABCF2 was highly expressed in all tissues except the roots, and silencing it significantly increased the accumulation of Chinese wheat mosaic virus or wheat yellow mosaic virus in wheat leaves. These results indicated that TaABCF may function in response to viral infection, laying the foundation for further studies on the mechanisms of this protein family in plant defence.


Assuntos
Genoma de Planta , Triticum , Triticum/metabolismo , Filogenia , Família Multigênica , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA