Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(11): 4856-4866, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37843986

RESUMO

Osteosarcoma is a malignant tumor with relatively high mortality rates in children and adolescents. While nanoparticles have been widely used in assisting the diagnosis and treatment of cancers, the biodistributions of nanoparticles in osteosarcoma models have not been well studied. Herein, we synthesize biocompatible and highly photoluminescent silicon quantum dot nanoparticles (SiQDNPs) and investigate their biodistributions in osteosarcoma mouse models after intravenous and intratumoral injections by fluorescence imaging. The bovine serum albumin (BSA)-coated and poly(ethylene glycol) (PEG)-conjugated SiQDNPs, when dispersed in phosphate-buffered saline (PBS), can emit red photoluminescence with the photoluminescence quantum yield more than 30% and have very low in vitro and in vivo toxicity. The biodistributions after intravenous injections reveal that the SiQDNPs are mainly metabolized through the livers in mice, while only slight accumulation in the osteosarcoma tumor is observed. Furthermore, the PEG conjugation can effectively extend the circulation time. Finally, a mixture of SiQDNPs and indocyanine green (ICG), which complement each other in the spectral range and diffusion length, is directly injected into the tumor for imaging. After the injection, the SiQDNPs with relatively large particle sizes stay around the injection site, while the ICG molecules diffuse over a broad range, especially in the muscular tissue. By taking advantage of this property, the difference between the osteosarcoma tumor and normal muscular tissue is demonstrated.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Pontos Quânticos , Criança , Camundongos , Humanos , Animais , Adolescente , Polietilenoglicóis , Silício , Distribuição Tecidual , Injeções Intralesionais , Osteossarcoma/diagnóstico por imagem , Verde de Indocianina , Neoplasias Ósseas/diagnóstico por imagem
2.
Nanoscale ; 15(27): 11544-11559, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37366254

RESUMO

Photoacoustic (PA) imaging using contrast agents with strong near-infrared-II (NIR-II, 1000-1700 nm) absorption enables deep penetration into biological tissue. Besides, biocompatibility and biodegradability are essential for clinical translation. Herein, we developed biocompatible and biodegradable germanium nanoparticles (GeNPs) with high photothermal stability as well as strong and broad absorption for NIR-II PA imaging. We first demonstrate the excellent biocompatibility of the GeNPs through experiments, including the zebrafish embryo survival rates, nude mouse body weight curves, and histological images of the major organs. Then, comprehensive PA imaging demonstrations are presented to showcase the versatile imaging capabilities and excellent biodegradability, including in vitro PA imaging which can bypass blood absorption, in vivo dual-wavelength PA imaging which can clearly distinguish the injected GeNPs from the background blood vessels, in vivo and ex vivo PA imaging with deep penetration, in vivo time-lapse PA imaging of a mouse ear for observing biodegradation, ex vivo time-lapse PA imaging of the major organs of a mouse model for observing the biodistribution after intravenous injection, and notably in vivo dual-modality fluorescence and PA imaging of osteosarcoma tumors. The in vivo biodegradation of GeNPs is observed not only in the normal tissue but also in the tumor, making the GeNPs a promising candidate for clinical NIR-II PA imaging applications.


Assuntos
Germânio , Nanopartículas , Técnicas Fotoacústicas , Camundongos , Animais , Meios de Contraste/farmacologia , Técnicas Fotoacústicas/métodos , Distribuição Tecidual , Peixe-Zebra , Fototerapia/métodos
3.
ACS Appl Mater Interfaces ; 15(16): 20120-20129, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042766

RESUMO

Solar distillation by interfacial evaporation is a promising method for relieving the freshwater crisis. However, the solar-to-water generation rate inside an enclosed system is usually lower than the solar-to-vapor evaporation rate in an open system due to the lower mass transfer rate. In this work, we demonstrate high rate solar distillation based on a three-dimensional copper foam (CF) cube, which offers five surfaces for absorbing direct and reflected sunlight to achieve optical concentration. The CF surface was first oxidized into black CuO and then dip-coated with a mixture of CuS nanoparticles (CuSNPs) and agarose gel (AG) for enhancing near-infrared (NIR) absorption and water transport. The open interconnected pores within the CF cube provide a large surface area for evaporation and steam escape. In an open space, the CuSNPs/AG-coated oxidized CF cube with the five surfaces illuminated by sunlight can achieve the solar-to-vapor evaporation rate equal to 5.83 kg m-2 h-1. When the same CF cube was placed in an enclosed distillation chamber with the five chamber surfaces illuminated by sunlight, the solar-to-water generation rate is equal to 4.14 kg m-2 h-1, which is 5.34 times higher than the case with only the top chamber surface illuminated. Lastly, when real seawater was used for distillation, although the solar-to-water generation rate was decreased by about 30%, the distillation efficiency was consistent after repeated cycles and no obvious salt accumulation was observed on the light absorbing surface. This work presents an efficient and reliable method of optical concentration for enhancing the solar distillation rate in an enclosed system.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500764

RESUMO

In this study, we propose highly stable perovskite quantum dots (PQDs) coated with Al2O3 using atomic layer deposition (ALD) passivation technology. This passivation layer effectively protects the QDs from moisture infiltration and oxidation as well as from high temperatures and any changes in the material characteristics. They exhibit excellent wavelength stability and reliability in terms of current variation tests, long-term light aging tests, and temperature/humidity tests (60°/90%). A white-light system has been fabricated by integrating a micro-LED and red phosphor exhibiting a high data transmission rate of 1 Gbit/s. These results suggest that PeQDs treated with ALD passivation protection offer promising prospects in full-color micro-displays and high-speed visible-light communication (VLC) applications.

5.
Micromachines (Basel) ; 13(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296105

RESUMO

Chemical mechanical polishing (CMP) is a well-known technology that can produce surfaces with outstanding global planarization without subsurface damage. A good CMP process for Silicon Carbide (SiC) requires a balanced interaction between SiC surface oxidation and the oxide layer removal. The oxidants in the CMP slurry control the surface oxidation efficiency, while the polishing mechanical force comes from the abrasive particles in the CMP slurry and the pad asperity, which is attributed to the unique pad structure and diamond conditioning. To date, to obtain a high-quality as-CMP SiC wafer, the material removal rate (MRR) of SiC is only a few micrometers per hour, which leads to significantly high operation costs. In comparison, conventional Si CMP has the MRR of a few micrometers per minute. To increase the MRR, improving the oxidation efficiency of SiC is essential. The higher oxidation efficiency enables the higher mechanical forces, leading to a higher MRR with better surface quality. However, the disparity on the Si-face and C-face surfaces of 4H- or 6H-SiC wafers greatly increases the CMP design complexity. On the other hand, integrating hybrid energies into the CMP system has proven to be an effective approach to enhance oxidation efficiency. In this review paper, the SiC wafering steps and their purposes are discussed. A comparison among the three configurations of SiC CMP currently used in the industry is made. Moreover, recent advances in CMP and hybrid CMP technologies, such as Tribo-CMP, electro-CMP (ECMP), Fenton-ECMP, ultrasonic-ECMP, photocatalytic CMP (PCMP), sulfate-PCMP, gas-PCMP and Fenton-PCMP are reviewed, with emphasis on their oxidation behaviors and polishing performance. Finally, we raise the importance of post-CMP cleaning and make a summary of the various SiC CMP technologies discussed in this work.

6.
ACS Omega ; 7(41): 36070-36091, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278089

RESUMO

Due to the emergence of electric vehicles, power electronics have become the new focal point of research. Compared to commercialized semiconductors, such as Si, GaN, and SiC, power devices based on ß-Ga2O3 are capable of handling high voltages in smaller dimensions and with higher efficiencies, because of the ultrawide bandgap (4.9 eV) and large breakdown electric field (8 MV cm-1). Furthermore, the ß-Ga2O3 bulk crystals can be synthesized by the relatively low-cost melt growth methods, making the single-crystal substrates and epitaxial layers readily accessible for fabricating high-performance power devices. In this article, we first provide a comprehensive review on the material properties, crystal growth, and deposition methods of ß-Ga2O3, and then focus on the state-of-the-art depletion mode, enhancement mode, and nanomembrane field-effect transistors (FETs) based on ß-Ga2O3 for high-power switching and high-frequency amplification applications. In the meantime, device-level approaches to cope with the two main issues of ß-Ga2O3, namely, the lack of p-type doping and the relatively low thermal conductivity, will be discussed and compared.

7.
Opt Express ; 30(15): 26896-26911, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236873

RESUMO

In this work, we demonstrate a new tapered prism-shaped luminescent solar concentrator (LSC), which guides most of the luminescence toward one edge instead of four, for the solar window application. Only one Si photovoltaic (PV) strip attached to the light-emitting sidewall is needed to collect the luminescence, which further reduces PV material cost and avoids electrical mismatch. To achieve high visible transmission and mitigate reabsorption, colloidal silicon quantum dots (SiQDs) with ultraviolet-selective absorption and large Stokes shift are used as the fluorophores. With the SiQD concentration equal to 8 mg mL-1, the SiQD-LSC as a solar window can attain a power conversion efficiency (PCE) equal to 0.27%, while ensuring high average visible transmission (AVT = 86%) and high color rendering index (CRI = 94 with AM1.5G as the incident spectrum). When adjusted to front-facing, the Si PV strip can harvest not only the direct sunlight but also the concentrated SiQD fluorescence guided from the LSC. As a result, the overall solar window PCE can be increased to 1.18%, and the PCE of the front-facing Si PV strip alone can be increased by 7% due to the luminescence guided from the SiQD-LSC.

8.
ACS Appl Mater Interfaces ; 12(39): 43771-43777, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32896124

RESUMO

We demonstrate luminescent solar concentrators (LSCs) based on colloidal silicon quantum dots (SiQDs) as UV-selective fluorophores and coupled with front-facing silicon photovoltaic cells for the solar window application. The visibly transparent LSC composed of a thin layer of liquid SiQD suspension sandwiched between two thin glass slabs constitutes the windowpane, while strips of silicon photovoltaic cells with their front surfaces adhering to the LSC rear surface form the window frame. Furthermore, the LSC perimeter is surrounded by reflecting mirrors for preventing the fluorescence from leaking out through the edges. The SiQDs dispersed in 1-octadecene selectively absorb UV light and re-emit red fluorescence with quantum efficiency about 40%. Owing to the negligible overlap between the absorbance and photoluminescence spectra, the reabsorption effect is insignificant. The front-facing silicon photovoltaic strips located at the window frame can produce electricity by harvesting not only solar radiation but also the SiQD-generated fluorescence propagating from the windowpane. For the SiQD-LSC with the total light absorbing area equal to 12 cm × 12 cm and the reflecting mirrors tilted 45°, an overall power conversion efficiency of 2.47% under simulated sunlight can be obtained of which about 6% is contributed by the SiQD fluorescence. Meanwhile, the SiQD-LSC retains high spectral quality with average visible transmission and color rendering index through the windowpane equal to 86% and 94, respectively.

9.
Anal Chem ; 91(9): 5499-5503, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986341

RESUMO

We demonstrate a novel optomechanical synchronization method to achieve ultrahigh-contrast time-gated fluorescence imaging using live zebrafish as models. Silicon quantum dot nanoparticles (SiQDNPs) with photoluminescence lifetime of about 16 µs were used as the long-lived probes to enable background autofluorescence removal and multiplexing through time-gating. A continuous-wave 405 nm laser as the excitation source was focused on a rotating optical chopper on which the emission light beam obtained from an inverted fluorescence microscope was also focused but with a phase difference such that in a short delay after the excitation laser is blocked, the emission light beam passes through the optical chopper, initiating the image acquisition by a conventional sensor. Both excitation and detection time windows were synchronized by one optical chopper, eliminating the need for pulsed light source and image intensifier which is often used as ultrafast optical shutter. Through use of the cost-effective time-gating method, nearly all background autofluorescence emitted from the yolk sac of a zebrafish embryo microinjected with the SiQDNPs was removed, leading to a 45-fold increase in signal-to-background ratio. Furthermore, two kinds of fluorescence signals emitted from the microinjected SiQDNPs and the intrinsic green fluorescent protein of transgenic zebrafish larvae can be clearly separated through time-gating.


Assuntos
Imagem Óptica/métodos , Pontos Quânticos/química , Silício/química , Animais , Fatores de Tempo , Peixe-Zebra
10.
ACS Appl Bio Mater ; 2(7): 2872-2878, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030821

RESUMO

We demonstrate phototoxicity generated by silicon quantum dot nanoparticles (SiQDNPs) using zebrafish as an animal model. Having long exciton lifetime, the SiQDNPs can function as photosensitizers which absorb incident optical light and transfer the energy to oxygen molecules in close proximity, generating cytotoxic singlet oxygens. First, the zebrafish embryos were soaked in the SiQDNP suspension in E3 medium, while being illuminated under blue light or kept in the dark for 6 h. Through neutral red staining immediately afterward, the illuminated embryos showed more prominent injuries at their head, yolk sac and tail parts than those in the dark. Furthermore, prolonged observation after the treatment revealed that the illuminated embryos had mortality rates significantly higher than those without illumination, clearly showing the phototoxicity effect generated by the SiQDNPs. However, adverse effect due to the immersion of whole embryos in the SiQDNP suspension was also observed. To alleviate this issue, minute amounts of the SiQDNPs were microinjected to the embryos, followed by blue light illumination. By acridine orange staining subsequently, cell apoptosis localized near the microinjection site was revealed, whereas no apoptosis was found for those also microinjected with the SiQDNPs but without illumination. The phototoxicity effect demonstrated on zebrafish embryos in this work manifests the potential of using the SiQDNPs as a photosensitizer for photodynamic therapy.

11.
Nanoscale Res Lett ; 13(1): 411, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578467

RESUMO

High-brightness white-light-emitting diodes (w-LEDs) with excellent color quality is demonstrated by using nontoxic nanomaterials. Previously, we have reported the high color quality w-LEDs with heavy-metal phosphor and quantum dots (QDs), which may cause environmental hazards. In the present work, liquid-type white LEDs composed of nontoxic materials, named as graphene and porous silicon quantum dots are fabricated with a high color rendering index (CRI) value gain up to 95. The liquid-typed device structure possesses minimized surface temperature and 25% higher value of luminous efficiency as compare to dispensing-typed structure. Further, the as-prepared device is environment friendly and attributed to low toxicity. The low toxicity and high R9 (87) component values were conjectured to produce new or improve current methods toward bioimaging application.

12.
ACS Appl Mater Interfaces ; 8(22): 13714-23, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198164

RESUMO

Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling. Herein, antibody-conjugated SiQD nanoparticles (SiQD-NPs) with antifouling coatings composed of bovine serum albumin (BSA) and polyethylene glycol (PEG) are demonstrated for immunostaining on live cancer cells. The monodisperse SiQD-NPs of diameter about 130 nm are synthesized by a novel top-down method, including electrochemical etching, photochemical hydrosilylation, high energy ball milling, and "selective-etching" in HNO3 and HF. Subsequently, the BSA and PEG are covalently grafted on to the SiQD-NP surface through presynthesized chemical linkers, resulting in a stable, hydrophilic, and antifouling organic capping layer with isothiocyanates as the terminal functional groups for facile conjugation to the antibodies. The in vitro cell viability assay reveals that the BSA-coated SiQD-NPs had exceptional biocompatibility, with minimal cytotoxicity at concentration up to 1600 µg mL(-1). Under 365 nm excitation, the SiQD-NP colloid emits bright reddish photoluminescence with PLQY = 45-55% in organic solvent and 5-10% in aqueous buffer. Finally, through confocal fluorescent imaging and flow cytometry analysis, the anti-HER2 conjugated SiQD-NPs show obvious specific binding to the HER2-overexpressing SKOV3 cells and negligible nonspecific binding to the HER2-nonexpressing CHO cells. Under similar experimental conditions, the immunofluorescence results obtained with the SiQD-NPs are comparable to those using conventional fluorescein isothiocyanate (FITC).


Assuntos
Nanopartículas , Pontos Quânticos , Coloração e Rotulagem/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Nanopartículas/toxicidade , Polietilenoglicóis/química , Soroalbumina Bovina/química , Silício
13.
Opt Express ; 22 Suppl 2: A276-81, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922236

RESUMO

We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved.

14.
Opt Express ; 22(5): A276-81, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800283

RESUMO

We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved.

15.
Opt Express ; 22(24): 29996-30003, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606929

RESUMO

We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.


Assuntos
Corantes Fluorescentes/química , Teoria Quântica , Silício/química , Microscopia de Fluorescência , Tamanho da Partícula , Porosidade , Análise Espectral
16.
Opt Lett ; 37(22): 4771-3, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164908

RESUMO

We demonstrate wavelength-tunable, air-stable and nontoxic phosphor materials based on silicon quantum dots (SiQDs). The phosphors, which are composed of micrometer-size silicon particles with attached SiQDs, are synthesized by an electrochemical etching method under ambient conditions. The photoluminescence (PL) peak wavelength can be controlled by the SiQD size due to quantum confinement effect, as well as the surface passivation chemistry of SiQDs. The red-emitting phosphors have PL quantum yield equal to 17%. The SiQD-phosphors can be embedded in polymers and efficiently excited by 405 nm light-emitting diodes for potential general lighting applications.

17.
Opt Express ; 20(1): A69-74, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22379666

RESUMO

We demonstrate silicon-based phosphor materials which exhibit bright photoluminescence from near-infra-red to green. The colloidal composites which are composed of silicon quantum dots (SiQDs) attached on micro-size silicon particles are synthesized by electrochemical etching of silicon wafers and then dispersed in ethanol. Subsequently, isotropic etching by HF/HNO3 mixture controls the size so as the emission wavelength of SiQDs, and forms an oxide passivating shell. The phosphors can further react with alkoxysilanes to form a stable suspension in non-polar solvents for solution-processing. The resulting red-light-emitting SiQD-based phosphors in chloroform exhibit photoluminescence external quantum efficiency of 15.9%. Their thin films can be efficiently excited by InGaN light-emitting diodes and are stable in room condition.


Assuntos
Iluminação/métodos , Medições Luminescentes/métodos , Óxidos/química , Pontos Quânticos , Dióxido de Silício/química
18.
Opt Express ; 18(21): 21622-7, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941060

RESUMO

We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.


Assuntos
Coloides/química , Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Óptica e Fotônica , Silício/química , Ligantes , Luz , Nanopartículas , Porosidade , Teoria Quântica , Espalhamento de Radiação , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA