Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Cell Int ; 22(1): 230, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35843949

RESUMO

BACKGROUND: The critical role of thioredoxin-interacting protein (TXNIP) in cellular sulfhydryl redox homeostasis and inflammasome activation is already widely known, however, no pan-cancer analysis is currently available. METHODS: We thus first explored the potential roles of TXNIP across thirty-three tumors mainly based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. RESULTS: TXNIP is lowly expressed in most cancers, and distinct associations exist between TXNIP expression and the prognosis of tumor patients. TXNIP expression was associated with tumor mutational burden, microsatellite instability, mismatch repair genes, tumor infiltrating immune cell abundance as well as cancer-associated fibroblasts. Moreover, ubiquitin mediated proteolysis, protein post-translational modification and other related pathways were involved in the functional mechanisms of TXNIP. CONCLUSIONS: Our first pan-cancer study comprehensively revealed the carcinostatic role of TXNIP across different tumors. And this molecule may be considered as a potential immunological and prognostic biomarker.

2.
Cell Death Dis ; 12(11): 975, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671029

RESUMO

Tumors can use metabolic reprogramming to survive nutrient stress. Epigenetic regulators play a critical role in metabolic adaptation. Here we screened a sgRNA library to identify epigenetic regulators responsible for the vulnerability of colorectal cancer (CRC) cells to glucose deprivation and found that more EZH2-knockout cells survived glucose deprivation. Then, we showed that EZH2 expression was significantly downregulated in response to glucose deprivation in a glucose-sensitive CRC cell line, and EZH2-knockdown cells were more resistant to glucose deprivation. Mechanistically, EZH2 deficiency upregulated the expression of glutaminase (GLS) and promoted the production of glutamate, which in turn led to increased synthesis of intracellular glutathione (GSH) and eventually attenuated the reactive oxygen species (ROS)-mediated cell death induced by glucose deprivation. Although EZH2 functioned as an oncogene in cancer progression and EZH2 knockout abolished colorectal cancer development in a mouse model, here we revealed a mechanistic link between EZH2 and metabolic reprogramming via the direct regulation of GLS expression and observed a negative correlation between EZH2 and GLS expression in colorectal cancer tissues. These findings further confirmed the importance of heterogeneity, provided an explanation for the clinical tolerance of cancer cells to EZH2 inhibitors from the perspective of metabolism, and proposed the possibility of combining EZH2 inhibitors and glutamine metabolism inhibitors for the treatment of cancer.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glutaminase/antagonistas & inibidores , Neoplasias/genética , Humanos , Neoplasias/patologia
3.
J Cell Physiol ; 236(6): 4528-4537, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33230810

RESUMO

The tumor microenvironment significantly affects tumor progression, and tumor cells can also remodel the tumor microenvironment through complex interaction. Inflammasomes are innate immune system receptors/sensors that regulate an inflammatory response mainly mediated by the nucleotide-binding oligomerization domain-like receptors in macrophages, which can also influence the formation, progression and therapeutic response of cancer. However, the effects of tumor-derived factors in the microenvironment on inflammasomes have rarely been reported. In this study, we found that lactate, as the main metabolite of tumor cells could specifically activate the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing protein 3 inflammasome through increasing the level of reactive oxygen species (ROS) in THP-1-derived macrophages. Furthermore, we showed that transforming growth factor-ß (TGF-ß), a cytokine accumulated in the tumor microenvironment, could be induced by lactate treatment in tumor cells, and in turn inhibit inflammasome activation induced by lactate and other canonical ligands in macrophages. In addition, TGF-ß might induce autophagy of macrophages in a SMAD-dependent manner, leading to ROS clearance and eventually inhibiting the activation of inflammasomes. Collectively, these results indicated that in the tumor microenvironment, tumor-derived lactate could act as a danger signal alerting innate immunity, but nevertheless tumor cells produced more TGF-ß to avoid immune surveillance.


Assuntos
Neoplasias Colorretais/metabolismo , Inflamassomos/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Comunicação Parácrina , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados/metabolismo , Células HCT116 , Humanos , Imunidade Inata , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células THP-1 , Evasão Tumoral
4.
Cell Death Dis ; 10(10): 739, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570702

RESUMO

The expression panel of plasma microRNA defined miR-532-3p as a valuable biomarker for colorectal adenoma (CRA). However, its expression pattern and function in colorectal cancer (CRC) have remained unclear. The present study investigated the expression levels of miR-532-3p and found that it was in situ downregulated both in CRA and CRC. Moreover, it functioned as a sensitizer for chemotherapy in CRC by inducing cell cycle arrest and early apoptosis via its activating effects on p53 and apoptotic signaling pathways. In addition, miR-532-3p was found to restrain cell growth, metastasis, and epithelial-mesenchymal transition (EMT) phenotype of CRC. A study on the mechanism behind these effects revealed that miR-532-3p directly binds to 3'UTR regions of ETS1 and TGM2, ultimately repressing the canonical Wnt/ß-catenin signaling. Further investigation showed that TGM2 was transcriptionally regulated by ETS1 and ETS1/TGM2 axis served as a vital functional target of miR-532-3p in suppressing CRC progression. To conclude, miR-532-3p mimics could act as potential candidate for molecular therapy in CRC through inactivation of the canonical Wnt/ß-catenin signaling and enhancement of chemosensitivity.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação ao GTP/genética , MicroRNAs/genética , Proteína Proto-Oncogênica c-ets-1/genética , Transglutaminases/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Proteína 2 Glutamina gama-Glutamiltransferase , Via de Sinalização Wnt/genética
5.
Sci Rep ; 6: 39517, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004755

RESUMO

Cytoplasmic STAT3, after activation by growth factors, translocates to different subcellular compartments, including nuclei and mitochondria, where it carries out different biological functions. However, the precise mechanism by which STAT3 undergoes mitochondrial translocation and subsequently regulates the tricarboxylic acid (TCA) cycle-electron transport chain (ETC) remains poorly understood. Here, we clarify this process by visualizing STAT3 acetylation in starved cells after serum reintroduction or insulin stimulation. CBP-acetylated STAT3 undergoes mitochondrial translocation in response to serum introduction or insulin stimulation. In mitochondria, STAT3 associates with the pyruvate dehydrogenase complex E1 (PDC-E1) and subsequently accelerates the conversion of pyruvate to acetyl-CoA, elevates the mitochondrial membrane potential, and promotes ATP synthesis. SIRT5 deacetylates STAT3, thereby inhibiting its function in mitochondrial pyruvate metabolism. In the A549 lung cancer cell line, constitutively acetylated STAT3 localizes to mitochondria, where it maintains the mitochondrial membrane potential and ATP synthesis in an active state.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Transporte Proteico , Piruvatos/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Acetilcoenzima A/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ciclo do Ácido Cítrico , Citoplasma/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Insulina/metabolismo , Camundongos , Oxirredução , Processamento de Proteína Pós-Traducional , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA