Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Protein Sci ; 33(4): e4952, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501491

RESUMO

The therapeutic efficacy of peptide-based drugs is commonly hampered by the intrinsic propensity to aggregation. A notable example is human calcitonin (hCT), a peptide hormone comprising 32 amino acids, which is synthesized and secreted by thyroid gland parafollicular cells (C cells). This hormone plays a vital role in regulating blood calcium levels and upholding bone integrity. Despite its physiological importance, utilizing hCT as a drug is hampered by its inclination to form amyloid. To address this limitation, an alternative is provided by salmon calcitonin (sCT), which possesses a lower aggregation propensity. Although sharing the same disulfide bond at the N terminus as hCT, sCT differs from hCT at a total of 16 amino acid positions. However, due to the dissimilarity in sequences, using sCT as a clinical replacement occasionally results in adverse side effects in patients. Earlier investigations have highlighted the significant roles of Tyr-12 and Asn-17 in inducing the formation of amyloid fibrils. By introducing double mutations at these sites, the ability to hinder aggregation can be significantly augmented. This study delves into the oligomerization and helical structure formation of the hCT double mutant (Y12LN17H hCT, noted as DM hCT), as well as two single mutants (Y12L and N17H), aiming to elucidate the mechanism behind hCT fibrillization. In addition, computational prediction tools were employed again to identify potential substitutes. Although the results yielded were not entirely satisfactory, a comparison between the newly examined and previously found hCT double mutants provides insights into the reduced aggregation propensity of the latter. This research endeavor holds the promise of informing the design of more effective therapeutic peptide drugs in the future.


Assuntos
Calcitonina , Humanos , Calcitonina/genética , Calcitonina/metabolismo , Calcitonina/farmacologia , Mutação
2.
Biophys Chem ; 304: 107129, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948788

RESUMO

Islet amyloid polypeptide (IAPP), also known as amylin, is a polypeptide hormone co-secreted with insulin by pancreatic ß-cells. In general, IAPP is soluble and lacks a defined structure. However, under certain conditions, these peptides tend to aggregate into soluble oligomers, eventually forming insoluble amyloid fibrils with typical cross-ß-sheet structures. Amylin aggregates, therefore, have been regarded as one of the hallmarks of type II diabetes (T2D). Among these aggregated species, oligomers were shown to exhibit significant cytotoxicity, leading to impaired ß-cell function and reduced ß-cell mass. Monitoring of oligomer appearance during IAPP fibrillation is of particular interest. In this study, we successfully grafted an aggregation-induced emission molecule, tetraphenylethylene (TPE), at the N-terminus of IAPP. By mixing a small amount of TPE-labeled IAPP with unlabeled IAPP, we were able to detect an increase in TPE fluorescence during the nucleation phase of IAPP aggregation in vitro. It may enable real-time monitoring of IAPP oligomer formation and is further applied in the diagnosis of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Insulina
3.
Chemistry ; 29(58): e202301879, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37706579

RESUMO

The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of ß-amyloid (Aß) peptides has long been an enigma. Here we show that the size of Aß40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aß40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aß40 oligomers could also be correlated to the motional dynamics of the sidechains.


Assuntos
Peptídeos beta-Amiloides , Micelas , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/química , Amiloide/química
4.
Chem Commun (Camb) ; 59(71): 10660-10663, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37581279

RESUMO

Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.


Assuntos
Anti-Infecciosos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Ácidos Graxos Insaturados , Anti-Infecciosos/farmacologia
5.
Protein Sci ; 32(8): e4711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354016

RESUMO

The irreversible aggregation of proteins or peptides greatly limits their bioavailability; therefore, effective inhibition using small molecules or biocompatible materials is very difficult. Human calcitonin (hCT), a hormone polypeptide with 32 residues, is secreted by the C-cells of the thyroid gland. The biological function of this hormone is to regulate calcium and phosphate concentrations in the blood via several different pathways. One of these is to inhibit the activity of osteoclasts; thus, calcitonin could be used to treat osteoporosis and Paget's disease of the bone. However, hCT is prone to aggregation in aqueous solution and forms amyloid fibrils. Salmon and eel calcitonin are currently used as clinical substitutes for hCT. In a previous study, we found that the replacement of two residues at positions 12 and 17 of hCT with amino acids that appear in the salmon sequence can greatly suppress peptide aggregation. The double mutations of hCT (DM hCT) also act as good inhibitors by disrupting wild-type hCT fibrillization, although the inhibition mechanism is not clear. More importantly, we demonstrated that DM hCT is biologically active in interacting with the calcitonin receptor. To further understand the inhibitory effect of DM hCT on hCT fibrillization, we created four relevant peptide fragments based on the DM hCT sequence. Our examination revealed that the formation of a helix of DM hCT was possibly a key component contributing to its inhibitory effect. This finding could help in the development of peptide-based inhibitors and in understanding the aggregation mechanism of hCT.


Assuntos
Calcitonina , Fragmentos de Peptídeos , Humanos , Calcitonina/genética , Calcitonina/farmacologia , Calcitonina/química , Mutação , Cálcio/metabolismo
6.
Talanta ; 254: 124130, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462286

RESUMO

The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic ß-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Corantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Amiloide/química , Amiloide/metabolismo
8.
ACS Omega ; 7(35): 31520-31528, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092590

RESUMO

To date, more than 30 human peptides or proteins have been found to form amyloid fibrils, most of which are associated with human diseases. However, currently, no cure for amyloidosis exists. Therefore, development of therapeutic strategies to inhibit amyloid formation is urgently required. Although the role of some amyloidogenic proteins has not been identified in certain diseases, their self-assembling behavior largely affects their bioactivity. Human calcitonin (hCT) is a hormone peptide containing 32 amino acids and is secreted by the parafollicular cells of the thyroid gland in the human body. It can regulate the concentration of calcium ions in the blood and block the activity of osteoclasts. Therefore, calcitonin has also been considered a therapeutic peptide. However, the aggregation of hCT hinders this process, and hCT has been replaced by salmon calcitonin in drug formulations. Recently, iron oxide nanomaterials have been developed as potential materials for various applications owing to their high biocompatibility, low toxicity, and ease of functionalization. In this study, nanoparticles (NPs) were prepared using a simple chemical coprecipitation method. We first demonstrated that dopamine-conjugated Fe3O4 inhibited hCT aggregation, similar to what we found when carbon dots were used as core materials in the previous study. Later, we continued to simplify the preparation process, that is, the mixing of dihydrocaffeic acid (DCA) and iron oxide NPs, to maintain their stability and inhibitory effect against hCT aggregation. Furthermore, DCA-decorated Fe3O4 can dissociate preformed hCT amyloid fibrils. This appears to be one of the most promising ways to stabilize hCT in solution and may be helpful for amyloidosis treatment.

9.
Chem Sci ; 13(29): 8526-8535, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974768

RESUMO

Extracellular accumulation of ß amyloid peptides of 40 (Aß40) and 42 residues (Aß42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aß with uniform size and monomorphic structure. Our experimental design is to incubate Aß peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aß oligomers (AßOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aß40Os adopt the structural motif of ß-loop-ß but the chemical shifts manifested that they may be structurally different from low-MW AßOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aß42Os can accelerate the fibrillization of Aß40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aß40Os cross seeded by Aß42Os and those of Aß40Os prepared in the absence of Aß42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the ß-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aß40Os.

10.
Biochimie ; 197: 121-129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240220

RESUMO

Irreversible aggregation greatly limits the bioavailability and therapeutic activity of peptide-based drugs, so preventing protein or peptide aggregation is a common issue in drug formulation. Human calcitonin (hCT), a peptide hormone secreted by thyroidal parafollicular cells, can regulate blood calcium levels and maintain bone structure. Hence, it can be used as a treatment for metabolic bone diseases, such as osteoporosis and Paget's disease. However, hCT has a relatively high propensity to form amyloid fibrils that hinder its biological function and limit its pharmaceutical potential. In previous studies, we demonstrated, along with other research groups, that modifying specific residues of hCT is sufficient to prevent hCT aggregation. We proceeded to find the key residues that regulate the aggregation of hCT for a better understanding of the mechanism of hCT aggregation. In this work, we used amyloid propensity prediction software and found that Tyr12 may play a key role in regulating hCT aggregation. Thus, we propose three human calcitonin variants (Y12E, Y12P, Y12R) for hCT non-amyloidogenic substituents and examined the aggregation characteristics of variants using multiple biophysical techniques. Y12E showed the best anti-aggregation propensity and can work as inhibitor of hCT aggregation. We also found this residue is crucial for membrane binding and receptor binding. The data presented herein provides an overview of Tyr12 that should be carefully considered in peptide design.


Assuntos
Amiloide , Calcitonina , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Calcitonina/química , Calcitonina/metabolismo , Calcitonina/farmacologia , Humanos , Ligação Proteica , Tirosina/metabolismo
11.
Macromol Biosci ; 22(5): e2100477, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35103401

RESUMO

Chitosan has been utilized as a popular biopolymer to fabricate hydrogels for biomedical applications. However, chitosan hydrogels are generally too brittle to mimic the deformability of the extracellular matrix in many tissues and organs. In particular, the role of the varied crosslinkers in determining the elasticity of chitosan hydrogels is lack of discussion. Here, three aldehyde-functionalized crosslinkers (i.e., aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP), glutaraldehyde (GA), and polydextran aldehyde (PDA)) are used to react with quaternized chitosan (QCS) through imine bonds to form hydrogels. The microstructures, mechanical performances, and cytocompatibility of the three hydrogels are systematically investigated. The APP/QCS hydrogels presented the best compressive and stretch properties among the three hydrogels. The mechanical property and antibacterial activity of APP/QCS hydrogels can be further modulated using varied QCS amounts, where more QCS contributed higher stiffness and stretchability as well as better bacterial inhibition to the APP/QCS hydrogels. Taken together, it is demonstrated that the inherent elastomeric characteristic of APP crosslinker provides the desirable elasticity and stretchability to QCS hydrogels compared to the other aldehyde-functionalized crosslinkers of GA and PDA. This strategy of using multivalent elastomeric crosslinkers to fabricate deformable chitosan hydrogels can expand the use of chitosan hydrogels in tissue engineering applications.


Assuntos
Quitosana , Hidrogéis , Aldeídos , Antibacterianos/farmacologia , Quitosana/química , Hidrogéis/química , Engenharia Tecidual
12.
Nanomaterials (Basel) ; 11(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34578556

RESUMO

The development of biocompatible nanomaterials has become a new trend in the treatment and prevention of human amyloidosis. Human calcitonin (hCT), a hormone peptide secreted from parafollicular cells, plays a major role in calcium-phosphorus metabolism. Moreover, it can be used in the treatment of osteoporosis and Paget's disease. Unfortunately, it tends to form amyloid fibrils irreversibly in an aqueous solution, resulting in a reduction of its bioavailability and therapeutic activity. Salmon calcitonin is the replacement of hCT as a widely therapeutic agent due to its lower propensity in aggregation and better bioactivity. Herein, we used citric acid to synthesize carbon dots (CDs) and modified their surface properties by a variety of chemical conjugations to provide different functionalized CDs. It was found that dopamine-conjugated CDs can effectively inhibit hCT aggregation especially in the fibril growth phase and dissociate preformed hCT amyloids. Although the decomposition mechanism of dopamine-conjugated CDs is not clear, it seems to be specific to hCT amyloids. In addition, we also tested dopamine-conjugated mesoporous silica nanoparticles in preventing hCT fibrillization. They also can work as inhibitors but are much less effective than CDs. Our studies emphasized the importance of the size and surface functionalization of core materials in the development of nanomaterials as emerging treatments for amyloidosis. On the other hand, proper functionalized CDs would be useful in hCT formulation.

13.
J Phys Chem B ; 125(21): 5559-5571, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34019761

RESUMO

Alzheimer's disease (AD) is characterized by the presence of extracellular senile plaques formed by ß-amyloid (Aß) peptides in the patient's brain. Previous studies have shown that the plaques in the AD brains are colocalized with the advanced glycation end products, which is mainly formed from a series of nonenzymatic reactions of proteins with reducing sugars or reactive dicarbonyls. Glycation was also demonstrated to increase the neurotoxicity of the Aß peptides. To clarify the impact of glycation on Aß aggregation, we synthesized two glycated Aß42 peptides by replacing Lys16 and Lys28 with Nε-carboxymethyllysine respectively to mimic the occurrence of protein glycation. Afterward, we monitored the aggregation kinetics and conformational change for two glycated peptides. We also used fluorescence correlation spectroscopy to probe the early stage of peptide oligomerization and tested their abilities in copper binding and reactive oxygen species production. Our data show that glycation significantly slows down the aggregation process and induces more cytotoxicity especially at position 28. We speculated that the higher toxicity might result from a relatively stable oligomeric form of peptide and not from ROS production. The data shown here emphasized that glycated proteins would be an important therapeutic target in AD treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Encéfalo , Glicosilação , Glioxal , Humanos , Fragmentos de Peptídeos/metabolismo
14.
Nat Commun ; 11(1): 5950, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230138

RESUMO

TDP-43 inclusions are found in many Alzheimer's disease (AD) patients presenting faster disease progression and greater brain atrophy. Previously, we showed full-length TDP-43 forms spherical oligomers and perturbs amyloid-ß (Aß) fibrillization. To elucidate the role of TDP-43 in AD, here, we examined the effect of TDP-43 in Aß aggregation and the attributed toxicity in mouse models. We found TDP-43 inhibited Aß fibrillization at initial and oligomeric stages. Aß fibrillization was delayed specifically in the presence of N-terminal domain containing TDP-43 variants, while C-terminal TDP-43 was not essential for Aß interaction. TDP-43 significantly enhanced Aß's ability to impair long-term potentiation and, upon intrahippocampal injection, caused spatial memory deficit. Following injection to AD transgenic mice, TDP-43 induced inflammation, interacted with Aß, and exacerbated AD-like pathology. TDP-43 oligomers mostly colocalized with intracellular Aß in the brain of AD patients. We conclude that TDP-43 inhibits Aß fibrillization through its interaction with Aß and exacerbates AD pathology.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Potenciação de Longa Duração , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/patologia , Agregação Patológica de Proteínas/patologia , Ligação Proteica , Domínios Proteicos
15.
Biochimie ; 177: 153-163, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860895

RESUMO

The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.


Assuntos
Amiloide/biossíntese , Amiloidose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lisina/química , Lisina/metabolismo , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/ultraestrutura , Membrana Celular/metabolismo , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Cinética , Lipídeos de Membrana/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica
16.
Biochemistry ; 59(15): 1482-1492, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266809

RESUMO

Aggregation of polypeptides and proteins is commonly associated with human and other vertebrate diseases. For example, amyloid plaques consisting of amyloid-ß proteins are frequently identified in Alzheimer's disease and islet amyloid formed by islet amyloid polypeptide (IAPP, amylin) can be found in most patients with type 2 diabetes (T2D). Although many fluorescent dyes have been developed to stain amyloid fibrils, very few examples have been designed for IAPP. In this study, a series of environmentally sensitive fluorescent probes using flavonoid as a scaffold design are rationally designed and synthesized. One of these probes, namely 3-HF-ene-4'-OMe, can bind to IAPP fibrils but not nonfibrillar IAPP by exhibiting a much stronger fluorescent enhancement at 535 nm. In addition, this probe shows better detection sensitivity to IAPP fibrils compared with that of conventionally used thioflavin-T. We demonstrate that 3-HF-ene-4'-OMe can be used to monitor the kinetics of IAPP fibril formation in vitro even in the presence an amyloid inhibitor. To test the specificity of the probe, we attempt to incubate this probe with amyloid fibrils formed from other amyloidogenic proteins. Interestingly, this probe shows different responses when mixed with these fibrils, suggesting the mode of binding of this probe on these fibrils could be different. Moreover, we show that this probe is not toxic to pancreatic mouse ß-cells. Further structural optimization based on the structure of 3-HF-ene-4'-OMe may yield a specific probe for imaging islet amyloid in the pancreas. That would improve our understanding of the relationship between islet amyloid and T2D.


Assuntos
Desenho de Fármacos , Flavonoides/química , Corantes Fluorescentes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Linhagem Celular Tumoral , Flavonoides/síntese química , Corantes Fluorescentes/síntese química , Humanos , Camundongos , Estrutura Molecular , Imagem Óptica
17.
J Phys Chem B ; 123(48): 10171-10180, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31692350

RESUMO

The most common obstacles to the development of therapeutic polypeptides are peptide stability and aggregation. Human calcitonin (hCT) is a 32-residue hormone polypeptide secreted from the C-cells of the thyroid gland and is responsible for calcium and phosphate regulation in the blood. hCT reduces calcium levels by inhibiting the activity of osteoclasts, which are bone cells that are mainly responsible for breaking down the bone tissue or decreasing the resorption of calcium from the kidneys. Thus, calcitonin injection has been used to treat osteoporosis and Paget's disease of bone. hCT is an aggregation-prone peptide with a high tendency to form amyloid fibrils. As a result, salmon calcitonin (sCT), which is different from hCT at 16-residue positions and has a lower propensity to aggregate, has been chosen as a clinical substitute for hCT. However, significant side effects, including immune reactions, have been shown with the use of sCT injection. In this study, we found that two residues, Tyr-12 and Asn-17, play key roles in inducing the fibrillization of hCT. Double mutation of hCT at these two crucial sites could greatly enhance its resistance to aggregation and provide a peptide-based inhibitor to prevent amyloid formation by hCT. Double-mutated hCT retains its ability to interact with its receptor in vivo. These findings suggest that this variant of hCT would serve as a valuable therapeutic alternative to sCT.


Assuntos
Amiloide/química , Calcitonina/química , Cálcio/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Agregados Proteicos/genética , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/genética , Amiloide/metabolismo , Animais , Calcitonina/genética , Calcitonina/metabolismo , Cálcio/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Células MCF-7 , Mutação , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica em alfa-Hélice , Salmão , Alinhamento de Sequência , Trifluoretanol/química , Trifluoretanol/metabolismo
18.
Biophys J ; 116(12): 2304-2313, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31155148

RESUMO

Protein glycation, also known as nonenzymatic glycosylation, is a spontaneous post-translational modification that would change the structure and stability of proteins or hormone peptides. Recent studies have indicated that glycation plays a role in type 2 diabetes (T2D) and neurodegenerative diseases. Over the last two decades, many types of advanced glycation end products (AGEs), formed through the reactions of an amino group of proteins with reducing sugars, have been identified and detected in vivo. However, the effect of glycation on protein aggregation has not been fully investigated. In this study, we aim to elucidate the impact of protein glycation on islet amyloid polypeptide (IAPP, also known as amylin) aggregation, which was strongly associated with T2D. We chemically synthesized glycated IAPP (AGE-IAPP) to mimic the consequence of this hormone peptide in a hyperglycemia (high blood sugar) environment. Our data revealed that AGE-IAPP formed amyloid faster than normal IAPP, and higher-molecular-weight AGE-IAPP oligomers were also observed in the early stage of aggregation. Circular dichroism spectra also indicated that AGE-IAPP exhibited faster conformational changes from random coil to its ß-sheet fibrillar states. Moreover, AGE-IAPP can induce normal IAPP to expedite its aggregation process, and its fibrils can also act as templates to promote IAPP aggregation. AGE-IAPP, like normal IAPP, is capable of interacting with synthetic membranes and also exhibits cytotoxicity. Our studies demonstrated that glycation modification of IAPP promotes the amyloidogenic properties of IAPP, and it may play a role in accumulating additional amyloid during T2D progression.


Assuntos
Amiloide/química , Amiloide/metabolismo , Glioxal/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Glicosilação/efeitos dos fármacos , Camundongos , Peso Molecular , Agregados Proteicos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
19.
Eur J Med Chem ; 158: 393-404, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30227353

RESUMO

One of the pathologic hallmarks in Alzheimer's disease (AD) is extracellular senile plaques composed of amyloid-ß (Aß) fibrils. Blocking Aß self-assembly or disassembling Aß aggregates by small molecules would be potential therapeutic strategies to treat AD. In this study, we synthesized a series of rationally designed divalent compounds and examined their effects on Aß fibrillization. A divalent amide (2) derived from two molecules of caffeic acid with a propylenediamine linker of ∼5.0 Šin length, which is close to the distance of adjacent ß sheets in Aß fibrils, showed good potency to inhibit Aß(1-42) fibrillization. Furthermore, compound 2 effectively dissociated the Aß(1-42) preformed fibrils. The cytotoxicity induced by Aß(1-42) aggregates in human neuroblastoma was reduced in the presence of 2, and feeding 2 to Aß transgenic C. elegans rescued the paralysis phenotype. In addition, the binding and stoichiometry of 2 to Aß(1-40) were demonstrated by using electrospray ionization-traveling wave ion mobility-mass spectrometry, while molecular dynamic simulation was conducted to gain structural insights into the Aß(1-40)-2 complex.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Amidas/química , Amidas/farmacologia , Amidas/uso terapêutico , Peptídeos beta-Amiloides/ultraestrutura , Animais , Caenorhabditis elegans , Ácidos Cafeicos/uso terapêutico , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/ultraestrutura , Multimerização Proteica/efeitos dos fármacos
20.
Chem Sci ; 8(7): 5030-5040, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970890

RESUMO

Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA